Answer:
mass of HCl = 3.65 g
Explanation:
Data Given:
Moles of hydrochloric acid HCl = 0.1 mole
Mass in grams of hydrochloric acid HCl = ?
Solution:
Mole Formula
no. of moles = Mass in grams / molar mass
To find Mass in grams rearrange the above Formula
Mass in grams = no. of moles x molar mass . . . . . . . (1)
Molar mass of HCl = 1 + 35.5 = 36.5 g/mol
Put values in equation 1
Mass in grams = 0.1 mole x 36.5 g/mol
Mass in grams = 3.65 g
mass of HCl = 3.65 g
The equilibrium constant, k of the reaction in which case, the concentrations of the given reactants and products are as indicated is; Choice A; K = 3.1 x 10⁵
<h3>What is the equilibrium constant , k of the reaction as described in the task content?</h3>
It follows from above that the concentrations of the reactants and products are as follows; [H2] = 0.10 M, [N2] = 0.10 M, and [NH3] = 5.6 M at equilibrium.
Hence, the equilibrium constant of the reaction in discuss is;
K = [5.6]²/[0.10]³[0.10]
k = 5.6² × 10⁴
k = 3.136 × 10⁵
K = 3.1 × 10⁵.
Read more on equilibrium constant;
brainly.com/question/1619133
#SPJ1
As of now, the nuclear fission is the most feasible energy source for human use. All the nuclear power plants are based on the controlled nuclear fission reaction, where the unstable nucleus is bombarded with high speed neutrons, thus, splitting the nucleus into stable ones and releasing huge amount of energy. The nuclear fusion requires very high temperature, the temperature equal's to that of the sun. Hence, it is not feasible right now. As the technology advances, we will see advancement in other form of energies.
Answer:
485.76 g of CO₂ can be made by this combustion
Explanation:
Combustion reaction:
2 C₄H₁₀(g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g)
If we only have the amount of butane, we assume the oxygen is the excess reagent.
Ratio is 2:8. Let's make a rule of three:
2 moles of butane can produce 8 moles of dioxide
Therefore, 2.76 moles of butane must produce (2.76 . 8)/ 2 = 11.04 moles of CO₂
We convert the moles to mass → 11.04 mol . 44g / 1 mol = 485.76 g