Answer:
the value of the equilibrium constant Kp for this reaction is 0.275
Explanation:
Step 1: Data given
Pressure HCl at the equilibrium = 18.0 atm
Pressure H2 at the equilibrium = 25.4 atm
Pressure Cl2 at the equilibrium = 46.4 atm
Step 2: The balanced equation
H2(g) + Cl2(g) → 2 HCl(g)
Step 3: Calculate the value of the equilibrium constant Kp for this reaction
Kp = (pHCl)² / (pH2*pCl2)
Kp = 18.0² / (25.4 * 46.4)
Kp = 324 / 1178.56
Kp = 0.275
the value of the equilibrium constant Kp for this reaction is 0.275
Answer : At constant pressure work is done by the system on the surroundings.
Explanation :
Work done : Any quantity that flows across the boundary of a system during a change in its state and it completely convertible into the lifting of a weight in the surroundings.
Formula for work done is:

Sign convention :
- When volume expand then system work that means work done by the system.
w = (-ve)
- When volume compress then surrounding work that means work done on the system.
w = (+ve)
The given reaction is:

This is a evaporation process in which phase changes from liquid state to gaseous state at constant temperature.
At constant pressure, work depends only on volume.
In evaporation process, the volume expand that means work is done by the system on the surroundings.
Sign convention is, w = (-ve)
Thus, at constant pressure work is done by the system on the surroundings.
The functions of the ears are:
I. Hearing by collecting and processing sound waves
II. Keeping our balance when we turn or bend over; option A
<h3>What is the function of the ear?</h3>
The ear is one of the five sense organs in the body.
The sense organs are the organs which receive external stimulus and send it to the brain for processing and response.
The other sense organs are:
- the eye
- the nose
- the skin
- the tongue
The functions of the ear are for hearing and for balance.
In conclusion, the sense organs function to receive stimulus and send them to the brain.
Learn more about the functions of the ear at: brainly.com/question/924275
#SPJ1
Explanation:
the pH of the solution defined as negatuve logarithm of
ion concentration.
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
1. Hydrogen ion concentration when pH of the solution is 11.
![11=-\log[H^+]](https://tex.z-dn.net/?f=11%3D-%5Clog%5BH%5E%2B%5D)
..(1)
At pH = 11, the concentration of
ions is
.
2. Hydrogen ion concentration when the pH of the solution is 6.
![6=-\log[H^+]'](https://tex.z-dn.net/?f=6%3D-%5Clog%5BH%5E%2B%5D%27)
..(2)
At pH = 6, the concentration of
ions is
.
3. On dividing (1) by (2).
![\frac{[H^+]}{[H^+]'}=\frac{1\times 10^{-11} mol/L}{1\times 10^{-6} mol/L}=1\times 10^{-5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5BH%5E%2B%5D%27%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-11%7D%20mol%2FL%7D%7B1%5Ctimes%2010%5E%7B-6%7D%20mol%2FL%7D%3D1%5Ctimes%2010%5E%7B-5%7D%20)
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is
.
4. Difference between the
ions at both pH:

This means that Hydrogen ions in a solution at pH = 7 has
ions fewer than in a solution at a pH = 6