First, let's start off by finding the mass of this whole hydrate.
(Note: the unit of measurement for mass will be amu)
Let's find the molecular mass of each element.




Now, let's find the mass of each compound.


We have 6 molecules of H2O, so multiply 18.015 by 6 then add that with the weight of CoCl2.


Now divide 108.09 (mass of all the H2O in the hydrate) by 237.923 (total mass of hydrate).


Turn that into a percentage and you get 45.431%.
Hope this helps! :)
Answer : The value of
for the reaction is +571.6 kJ/mole.
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction is,

Now we have to determine the value of
for the following reaction i.e,

According to the Hess’s law, if we reverse the reaction then the sign of
change.
So, the value
for the reaction will be:


Hence, the value of
for the reaction is +571.6 kJ/mole.
A metal ion is a type of atom compound that has an electric<span> charge. </span>Such<span> atoms willingly lose electrons in order to build positive ions called cations.</span>
<span>In a mole of anything, there are 6.023 x 10^23 units. So, in 3.9 moles of sulfur, there are 3.9 * 6.023 x 10^23 = 23 x 10^23 = 2.3 x 10^24 atoms (keeping only 2 sig figs). Hope I help!!
</span>