The strong nuclear force holds the nucleus of an atom together.
Somehow, it overcomes the electrical force of repulsion between protons in the nucleus, which all have the same charge but still stay close together somehow. (b)
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.
To solve this problem we will apply the concept related to the kinetic energy theorem. Said theorem states that the work done by the net force (sum of all forces) applied to a particle is equal to the change experienced by the kinetic energy of that particle. This is:


Here,
m = mass
v = Velocity
Our values are given as,


Replacing,


Therefore the mechanical energy lost due to friction acting on the runner is 907J
<span>The angular momentum L of a rotating wheel with mass m, radius r, moment of inertia I, angular velocity ω, and velocity v of its outer edge:
</span><span>C) Iω</span>
Either she doesn’t love him or just isn’t the most romantic type