All living creatures contain carbon
Answer:
(3) The period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4) he gravitational force between the Sun and Neptune is 6.75 x 10²⁰ N
Explanation:
(3) The period of a satellite is given as;

where;
T is the period of the satellite
M is mass of Earth
r is the radius of the orbit
Thus, the period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4)
Given;
mass of the ball, m₁ = 1.99 x 10⁴⁰ kg
mass of Neptune, m₂ = 1.03 x 10²⁶ kg
mass of Sun, m₃ = 1.99 x 10³⁰ kg
distance between the Sun and Neptune, r = 4.5 x 10¹² m
The gravitational force between the Sun and Neptune is calculated as;

Answer:
0.009 N, repulsive
Explanation:
The electrostatic force between two electric charges is given by:

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
In this problem, we have
are the two charges
r = 4.5 m is their separation
Substituting into the equation, we find

Moreover, the force is repulsive. In fact, the following rules apply:
- When two charges have same sign, they repel each other
- When two charges have opposite signs, they attract each other
<span>During winter for a given hemisphere, solar radiation reaches the lowest period of its annual cycle due to the tilt of the earth on its axis. As the earth rotates around the sun, this tilt occludes a portion of the energy released by the sun as it diffuses in the atmosphere.</span>
Explanation:
The buoyant force must be greater to float, otherwise it would sink, its like a barrel in water, the more water weight in it the more it sinks, the more air weight the more it rises.