Polyunsaturated fatty acids which is Omega-3 fatty acids.
Explanation :
It is given that,
BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :
We know that, 1 kilocalorie = 4184 joules
So,
J/sec is nothing but watts.
So,
and
So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.
Answer:
This is how I figured it out:
- 215.5 rounded to one significant figure is 200
- 101.02555 rounded to one significant figure is 100.
- 200 + 100 = 300.
Hope this helps!
Explanation:
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,
substituting the values in the equation we get,
f = 1.03 x 10⁸Hz
Now,
The time period (T) =
or
T = = 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target = = 145 m
Answer:
a)
Now we can replace the velocity for t=1.75 s
For t = 3.0 s we have:
b)
And we can find the positions for the two times required like this:
And now we can replace and we got:
Explanation:
The particle position is given by:
Part a
In order to find the velocity we need to take the first derivate for the position function like this:
Now we can replace the velocity for t=1.75 s
For t = 3.0 s we have:
Part b
For this case we can find the average velocity with the following formula:
And we can find the positions for the two times required like this:
And now we can replace and we got: