Answer:
The average kinetic energy of the system has increased as a result of the temperature increasing.
Explanation:
Assuming this is a gas based on the framing.
The molecules of a gas span a distribution of speeds, and the average kinetic energy of the molecules is directly proportional to the absolute temperature of the sample. KEavg is proportional to T.
This can be further studied until the Kinetic-Molecular Theory.
Answer:
Covalent bond between identical atoms
Covalent bonds occur between identical atoms or between different atoms whose difference in electronegativity is insufficient to allow transfer of electrons to form ions. ... The two hydrogen atoms are attracted to the same pair of electrons in the covalent bond.
Answer:
Ion-ion force between Na+ and Cl− ions
London dispersion force between two hexane molecules
Explanation:
"Ion-dipole force between Na+ ions and a hexane molecule
" does not exist since hexane has only non-polar bonds and therefore no dipole.
"Ion-ion force between Na+ and Cl− ions
" exists since both are ions.
"Dipole-dipole force between two hexane molecules
" does not exist since hexane molecules do not have a dipole.
"Hydrogen bonding between Na+ ions and a hexane molecule
" does not exist since the hydrogen in the hydrogen bond must be bonded directly to an electronegative atom, which hexane does not have since it is a hydrocarbon.
"London dispersion force between two hexane molecules" exist since hexane is a molecular compound.
Answer:
11.9 g of nitrogen monoxide
Explanation:
We'll begin by calculating the number of mole in 6.75 g of NH₃. This can be obtained as follow:
Mass of NH₃ = 6.75 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 6.75 / 17
Mole of NH₃ = 0.397 mole
Next, we shall determine the number of mole of NO produced by the reaction of 0.397 mole of NH₃. This can be obtained as follow:
4NH₃ + 5O₂ —> 4NO + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted to produce 4 moles of NO.
Therefore, 0.397 mole of NH₃ will also react to produce 0.397 mole of NO.
Finally, we shall determine the mass of 0.397 mole of NO. This can be obtained as follow:
Mole of NO = 0.397 mole
Molar mass of NO = 14 + 16 = 30 g/mol
Mass of NO =?
Mass = mole × molar mass
Mass of NO = 0.397 × 30
Mass of NO = 11.9 g
Thus, the mass of NO produced is 11.9 g
What do you mean by unlock all of them? Please explain