The drug has a concentration of 6 mg per 1 ml. Therefore, to know that number of ml containing 25 grams, we will simply do cross multiplication as follows:
amount of drug = (25 x 1) / 6 = 4.1667 ml
Therefore, for the patient to receive 25 mg of methimazole, he/she should take 4.1667 ml of the drug solution.
The correct answer is C. The water is the solvent because the green pellets dissolved in it.
Explanation:
In solutions, the are two substances involved, the solvent and the solute. The solvent is usually a liquid substance; additionally, the solvent dissolves another substance, which is known as the solute. For example, if you dissolve a spoon of salt in a glass of water, the solute is the salt which is the substance dissolved and the solvent is the water because the solute is dissolved in it. According to this, in the case presented the water is the solvent because the green pellets which are the solute dissolve in it.
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater
I think it is called a loess. Please correct me if I am wrong.
The law of conservation of mass dictates that the total mass of reactants must be equal to the total mass of the products. Thus:
mass(MgO) = mass(Mg) + mass(O)
mass(MgO) = 24 + 16
mass(MgO) = 40 g
The third option is correct.