Answer:
The answer to your question is M = 36.49 g
Explanation:
Data
mass = 8.21 g
volume = 4.8064 L
Temperature = 200°C
Pressure = 1.816 atm
M = ?
Process
1.- Convert temperature to °K
°K = 273 + 200
°K = 473
2.- Calculate the number of moles
n = (PV)/RT
n = (1.816)(4.8064)/(0.082)(473)
n = 0.225
3.- Calculate the molar mass
M --------------- 1 mol
8.21 g ---------- 0.225 moles
M = (1 x 8.21)/0.225
M = 36.49 g
The sign's glass absorbed 25466.7 J
<h3>
Further explanation</h3>
Given
The temperature of glass : 23.5 °C to 65.5 °C
mass = 905 g
the specific heat capacity = 0.67 J/g °C
Required
Heat absorbed
Solution
Heat absorbed by sign's glass can be formulated :

ΔT=65.5 - 23.5 = 42

D, carbon dioxide and water. Methane and oxygen PRODUCE carbon dioxide and water in their reaction.
Answer:
2.0202 grams
Explanation:
1.4% (m/v) glucose solution means: 1.4g glucose/100mL solution.
so ?g glucose = 144.3 mL soln
Now apply the conversion factor, and you have:
?g glucose = 144.3mL soln x (1.4g glucose/100mL soln).
so you have (144.3x1.4/100) g glucose= 2.0202 grams
Answer:
hecto-
Explanation:
The prefix value of 100 is hecto therefore 100X can be called hecto-x.
Such prefixes as this are expressed in the order of tens. Units generally exists scientifically in multiples and submultiples form using prefixes.
For the multiples:
10 deca(da)
100 hecto(h)
1000 kilo(k)
1000000 mega(M)
1000000000 giga(G)