1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
3 years ago
7

An ideal gas undergoes two processes: one frictionless and the other not. In both the cases, the gas is initially at 200 ℉ and 1

.5 atm, and when the process is over, the gas is at 700 °F and 22 atm. For which process does the gas experience a greater change in entropy?
Engineering
2 answers:
Lorico [155]3 years ago
8 0

Answer:

The change in entropy is the same in both process

Explanation:

The change is entropy is the same in both process because the entropy is about the randomness or disorderliness of the molecules of a substance due to chemical reactions or various arrangements given to them. it is a point function because it depends on the initial and final state of a substance.

In both processes the initial state of the ideal gas is the same for both process and the final state of the ideal gas for both processes are the same. hence the change in entropy is the same. also in ideal conditions there are no energy losses due to Friction.

Zarrin [17]3 years ago
6 0

Answer:

The process which has friction

Explanation:

The entropy is simply the change in the state of the things or the molecules in the system. It is simply the change in the energy of the system with a focus on the atoms in the system. This is also known as the internal energy of the system and is given the symbol, G. The friction contributes to the change in the energy of the system. This is because friction generates another form of energy - that is heat energy. This energy causes the internal temperature id the system to increase. Hence the greater change in the temperature.

You might be interested in
A wooden pallet carrying 540kg rests on a wooden floor. (a) a forklift driver decides to push it without lifting it.what force m
kicyunya [14]

Answer:

The appropriate solution is "1481.76 N".

Explanation:

According to the question,

Mass,

m = 540 kg

Coefficient of static friction,

\mu_s = 0.28

Now,

The applied force will be:

⇒ F=\mu_s mg

By substituting the values, we get

       =0.28\times 540\times 9.8

       =1481.76 \ N

8 0
3 years ago
Which of the following factors does not promote safety in the shop?
sergey [27]
“Thinking about pleasant things to pass the time” would not promote safety in the shop because it would be taking the focus away from important tasks, which in turn decreases safety.
6 0
3 years ago
Multiple Choice
Ymorist [56]

Answer:

Sealing agent

Explanation:

Generally, when we have water leaks in almost any building or equipment, we use a sealant. However, this sealant could be of different types depending on the peculiarity of the leakage.

Thus, the correct answer is sealing agent.

5 0
3 years ago
Read 2 more answers
A water tank filled with solar-heated water at 40°C is to be used for showers in a field using gravity-driven flow.
Alenkasestr [34]

Answer:

yes sir

Explanation:

4 0
3 years ago
A counter-flow double-piped heat exchange is to heat water from 20oC to 80oC at a rate of 1.2 kg/s. The heating is to be accompl
lawyer [7]

Answer:

110 m or 11,000 cm

Explanation:

  • let mass flow rate for cold and hot fluid = M<em>c</em> and M<em>h</em> respectively
  • let specific heat for cold and hot fluid = C<em>pc</em> and C<em>ph </em>respectively
  • let heat capacity rate for cold and hot fluid = C<em>c</em> and C<em>h </em>respectively

M<em>c</em> = 1.2 kg/s and M<em>h = </em>2 kg/s

C<em>pc</em> = 4.18 kj/kg °c and C<em>ph</em> = 4.31 kj/kg °c

<u>Using effectiveness-NUT method</u>

  1. <em>First, we need to determine heat capacity rate for cold and hot fluid, and determine the dimensionless heat capacity rate</em>

C<em>c</em> = M<em>c</em> × C<em>pc</em> = 1.2 kg/s  × 4.18 kj/kg °c = 5.016 kW/°c

C<em>h = </em>M<em>h</em> × C<em>ph </em>= 2 kg/s  × 4.31 kj/kg °c = 8.62 kW/°c

From the result above cold fluid heat capacity rate is smaller

Dimensionless heat capacity rate, C = minimum capacity/maximum capacity

C= C<em>min</em>/C<em>max</em>

C = 5.016/8.62 = 0.582

          .<em>2 Second, we determine the maximum heat transfer rate, Qmax</em>

Q<em>max</em> = C<em>min </em>(Inlet Temp. of hot fluid - Inlet Temp. of cold fluid)

Q<em>max</em> = (5.016 kW/°c)(160 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(140) °c = 702.24 kW

          .<em>3 Third, we determine the actual heat transfer rate, Q</em>

Q = C<em>min (</em>outlet Temp. of cold fluid - inlet Temp. of cold fluid)

Q = (5.016 kW/°c)(80 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(60) °c = 303.66 kW

            .<em>4 Fourth, we determine Effectiveness of the heat exchanger, </em>ε

ε<em> </em>= Q/Qmax

ε <em>= </em>303.66 kW/702.24 kW

ε = 0.432

           .<em>5 Fifth, using appropriate  effective relation for double pipe counter flow to determine NTU for the heat exchanger</em>

NTU = \\ \frac{1}{C-1} ln(\frac{ε-1}{εc -1} )

NTU = \frac{1}{0.582-1} ln(\frac{0.432 -1}{0.432 X 0.582   -1} )

NTU = 0.661

          <em>.6 sixth, we determine Heat Exchanger surface area, As</em>

From the question, the overall heat transfer coefficient U = 640 W/m²

As = \frac{NTU C{min} }{U}

As = \frac{0.661 x 5016 W. °c }{640 W/m²}

As = 5.18 m²

            <em>.7 Finally, we determine the length of the heat exchanger, L</em>

L = \frac{As}{\pi D}

L = \frac{5.18 m² }{\pi (0.015 m)}

L= 109.91 m

L ≅ 110 m = 11,000 cm

3 0
3 years ago
Other questions:
  • A food department is kept at -12 °C by a refrigerator in an environment at 30 °C. The total heat gain to the food department is
    8·1 answer
  • A production plant has a requirement for a counter that will count 4,000 items before recycling and starting over. How many D fl
    15·1 answer
  • Shows a closed tank holding air and oil to which is connected a U-tube mercury manometer and a pressure gage. Determine the read
    13·1 answer
  • A composite wall is composed of 20 cm of concrete block with k = 0.5 W/m-K and 5 cm of foam insulation with k = 0.03 W/m-K. The
    13·1 answer
  • 1. How many types of pumps are present?​
    14·1 answer
  • The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as a 1.2-mm-diameter sphe
    7·1 answer
  • A car is about to start but it blows up. what is the problem with the car<br> ?
    6·2 answers
  • 3.
    7·1 answer
  • Whats the difference between GeForce GTX 1060 and Geforce GTX 3060? Is there any big changes to FPS and other settings?
    7·2 answers
  • An excavation is at risk for cave-in and water accumulation because of the excess soil that has accumulated. What type of excava
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!