Answer:
0.0659 A
Explanation:
Given that :
( saturation current )
at 25°c = 300 k ( room temperature )
n = 2 for silicon diode
Determine the saturation current at 100 degrees = 373 k
Diode equation at room temperature = I = Io 
next we have to determine the value of V at 373 k
q / kT = (1.6 * 10^-19) / (1.38 * 10^-23 * 373) = 31.08 V^-1
Given that I is constant
Io =
= 0.0659 A
Answer:
a) 
b) attached below
c) type zero system
d) k > 
e) The gain K increases above % error as the steady state speed increases
Explanation:
Given data:
Motor voltage = 12 v
steady state speed = 200 rad/s
time taken to reach 63.2% = 1.2 seconds
<u>a) The transfer function of the motor from voltage to speed</u>
let ;
be the transfer function of a motor
when i/p = 12v then steady state speed ( k1 ) = 200 rad/s , St ( time constant ) = 1.2 sec
hence the transfer function of the motor from voltage to speed
= 
<u>b) draw the block diagram of the system with plant controller and the feedback path </u>
attached below is the remaining part of the detailed solution
c) The system is a type-zero system because the pole at the origin is zero
d) ) k > 
In places with cold winters, space heating systems have a fundamental role in buildings. Without them, indoor temperatures would quickly become unsuitable for human occupancy. The local weather is one of the most important factors when designing a heating system; if two identical buildings are developed in Miami FL and New York City, the heating load will be much higher for the NYC property.
Answer:
Option D
160 kHz
Explanation:
Since we must use at least one synchronization bit, total message signal is 15+1=16
The minimum sampling frequency, fs=2fm=2(5)=10 kHz
Bandwith, BW required is given by
BW=Nfs=16(10)=160 kHz
Answer:
C: Viscosity, the resistance to flow that fluids exhibit
Explanation:
Did it on Edge :)