Answer:
h = 61.16[cm]
Explanation:
In order to solve this problem we must use the principle of energy conservation. Which tells us that energy is conserved or equal in two points in space for an instant in time.
In this way we will have the points A & B, the point A for the moment before shooting and the moment B when the Dart is in the highest position.
In this way the energy is:
Now we must identify the energies in the moments A & B. in the instant A we have the spring compressed, in such a way that only elastic energy is stored.
where:
k = spring constant = 20 [N/m]
x = distance = 0.3 [m]
Now, at the moment when the dart is in the highest position (B), it means that it does not go up anymore, that is, its movement is zero, and therefore its kinetic energy is zero, in this way the energy at the highest point corresponds to potential energy.
where:
m = mass = 0.15[kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation [m]
Now replacing:
For any object to move at a constant velocity, the net force acting on the object must be ZERO.
Answer:
Potential difference will be 151.9 volt
Explanation:
We have given capacitance of the capacitor
Voltage V = 49 Volt
Dielectric constant K = 3.1
We have to find the potential difference
We know that when a dielectric medium is introduced then p[otential difference is increases by k times
As the dielectric constant k = 3.1
So potential difference will be = 3.1×49 = 151.9 volt
Answer:
(a) g = 8.82158145.
(b) 7699.990192m/s.
(c)5484.3301s = 1.5234 hours.(extremely fast).
Explanation:
(a) Strength of gravitational field 'g' by definition is
, here G is Gravitational Constant, and r is distance from center of earth, all the values will remain same except r which will be radius of earth + altitude at which ISS is in orbit.
r = 6721,000 meters, putting this value in above equation gives g = 8.82158145.
(b) We have to essentially calculate centripetal acceleration that equals new 'g'.
here g is known, r is known and v is unknown.
plugging in r and g in above and solving for unknown gives V = 7699.990192m/s.
(c) S = vT, here T is time period or time required to complete one full revolution.
S = earth's circumfrence , V is calculated in (B) T is unknown.
solving for unknown gives T = 5484.3301s = 1.5234hours.
The correct answer among the choices is option D. Density is not one of the properties included in the ideal gas law. The law is expressed as: PV=nRT. As we can see, the pressure, the volume and the temperature of the gas are included in the law.