What part of chemistry is this
<u>Answer:</u> The empirical formula for the given compound is 
<u>Explanation:</u>
We are given:
Percentage of H = 5.80 %
Percentage of O = 23.02 %
Percentage of N = 20.16 %
Percentage of Cl = 51.02 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of H = 5.80 g
Mass of O = 23.02 g
Mass of N = 20.16 g
Mass of Cl = 51.02 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Hydrogen = 
Moles of Oxygen = 
Moles of Nitrogen = 
Moles of Chlorine = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 1.44 moles.
For Hydrogen = 
For Oxygen = 
For Nitrogen = 
For Chlorine = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of H : O : N : Cl = 4 : 1 : 1 : 1
Hence, the empirical formula for the given compound is 
694,563,239 rounded to the nearest thousand is 694,563.
It's because the first digit from the right is for ones, second for tens, third for hundreds and fourth for thousands and that's the one that we should take a closer look at. You can round it either to 3 or 4, depends on the digit of hundreds. In this case 3239 is clearly closer to 3000 than 4000, that's why we round it to 694,563, not 694,564.
High temperature and pressure produce the highest rate of reaction. However, this must be balanced with the high cost of the energy needed to maintain these conditions. Catalysts increase the rate of reaction without affecting the yield. This can help create processes which work well even at lower temperatures.
I hope this helps you.
Answer:
The spin of the complex is 5.92 B.M
Explanation:
Please see the attachments below