Answer:
Yes. Towards the center. 8210 N.
Explanation:
Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.
In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.
The net force is equal to
Note that 95 km/h is equal to 26.3 m/s.
This is the centripetal force and equal to the x-component of the applied force.
As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.
The amount of the friction force should be
Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.
Feel better and develop communication skills
It's not only the physical well-being that has developed as well as intellectual and emotional aspect of an individual. When having conversation to someone and you are doing something it's also the same of having a multitask work. That all senses response quickly and something is developing in you, at same time you are establishing good rapport towards others.
Answer:
pagtalon?
Explanation:
because that had to be the answer
Answer:
time constant will decrease and steady state current will decrease on increasing the resistance
Explanation:
As we know that the EMF of cell is E which is used to connected across a resistor and an inductor.
So we will have
here we know that
now here we have
so if we increase the value of resistance of the wire then the time constant will decrease
and hence it will take less time to reach near the steady state value
also the steady state current will be smaller in that case
Answer: A wave with a frequency of 14 Hz has a wavelength of 3 meters. At what speed will this wave travel? 1. = 3m (4. = 42m. 2. ... 1,7m (46) = 7802 m. 4. A wave traveling at 230 m/sec has a wavelength of 2.1 meters. What is the frequency of.
Explanation: please give me brainlest