Answer:
Explanation:
The charges will repel each other and go away with increasing velocity , their kinetic energy coming from their potential energy .
Their potential energy at distance d
= kq₁q₂ / d
= 9 x 10⁹ x 36 x 10⁻¹² / 2 x 10⁻² J
= 16.2 J
Their total kinetic energy will be equal to this potential energy.
2 x 1/2 x mv² = 16.2
= 3 x 10⁻⁶ v² = 16.2
v = 5.4 x 10⁶
v = 2.32 x 10³ m/s
When masses are different , total P.E, will be divided between them as follows
K E of 3 μ = (16.2 / 30+3) x 30
= 14.73 J
1/2 X 3 X 10⁻⁶ v₁² = 14.73
v₁ = 3.13 x 10³
K E of 30 μ = (16.2 / 30+3) x 3
= 1.47 J
1/2 x 30 x 10⁻⁶ x v₂² = 1.47
v₂ = .313 x 10³ m/s
Since kinetic energy is a form of energy using the equation KE=¹/₂mv², the units of measurement is in Joules (J). Therefore, the tennis ball had more kinetic energy than the baseball since velocity is a larger factor than the mass is when determining kinetic energy.
We can approach this in another way.
We know that sin(∅) = height / hypotenuse.
Thus, for x, height is 1 and hypotenuse is 3. Using Pythagoras theorem,
3² = 1² + b²
b = √8
cos(x) = b/hypotenuse
cos(x) = √8 / 3
Now, lets consider y:
sec(y) = 1 / cos(y) = 1 / base / hypotenuse = hypotenuse / base
The hypotenuse is 25 and the base is 24. We again apply Pythagoras theorem to find the third side, which works out to be:
height = 7
sin(y) = height / hypotenuse
sin(y) = 7/25
Now, sin(x + y) =
sin(x)cos(y) + sin(y)cos(x)
= (1/3)(24/25) + (√8 / 3)(7/25)
= 8/25 + 7√8/75
= (24 + 14√2) / 75
Answer:
a)θ=71.89°
b)NO
Explanation:
Given that
For glass n= 1.38
We know that for air n'=1
The angle for total internal reflection θc given as
sin θc=n'/n
By putting the values
sin θc=n'/n
sin θc=1/1.38
θc=46.43°
n'sinθ = n sinθref
sinθref = cosθc
n'sinθ = n cosθc
1 x sinθ =1.38 x cos 46.43°
θ=71.89°
b)
NO