1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kamila [148]
3 years ago
13

A proton moves at constant velocity in the +y direction, through a region in which there is an electric field and a magnetic fie

ld. The electric field is in the +x direction, and has magnitude 300 V/m. The magnetic field is in the -z direction, and has magnitude 0.45 T.What is the magnitude of the net force on the proton?Fnet = NWhat is the speed of the proton?v = m/s
Physics
1 answer:
Ivenika [448]3 years ago
4 0

Answer:

a) F_{e} - F_{m} = 0,  b) v = 666.67 m / s

Explanation:

For the proton to move y-axis  the sum of the electric and magnetic force must be zero, therefore

        F_{e} - F_{m}= 0

a) ∑ F = 0

        F_{e} - F_{m} = 0

b) we write the forces

         q E = q v B

         v = E / B

Let's calculate

      v = 300 / 0.45

      v = 666.67 m / s

You might be interested in
When a falling meteoroid is at a distance above the earth's surface of 2.60 times the earth's radius, what is its acceleration d
Mice21 [21]

The gravitational acceleration at any distance r is given by

g=  \frac{GM}{r^2}

where G is the gravitational constant, M the Earth's mass and r is the distance measured from the center of the Earth.

The Earth's radius is r_e=6.37 \cdot 10^6 m, so the meteoroid is located at a distance of:

r=r_e+2.60 r_e =3.60 r_e =  2.29 \cdot 10^7 m

And by substituting this value into the previous formula, we can find the value of g at that altitude:

g=  \frac{GM}{r^2} =  \frac{(6.67 \cdot 10^{-11} m^3 kg^{-1} s^{-2})(5.97 \cdot 10^{24} kg)}{(2.29 \cdot 10^7 m)^2} =0.75 m/s^2

5 0
3 years ago
Read 2 more answers
A stone with a mass m is dropped from an airplane that has a horizontal velocity v at a height h above a lake. If air resistance
seropon [69]

Answer: Option B. R = (1/2)gt^2

Explanation:

S = R (horizontal distance)

V^2 = 2gS

V^2 = 2gR

R = V^2 / 2g

But V = gt

R = (gt)^2 / 2g

R = (g^2 x t^2) / 2g

R = gt^2 / 2

But t^2 = 2h/g

R = ( g x 2h/g) / 2

R = h

But h = (1/2)gt^2

R = h = (1/2)gt^2

4 0
3 years ago
If vx=9.80 units and vy=-6.40 units, determine the magnitude and direction of v
dexar [7]
The resultant vector can be determined by the component vectors. The component vectors are vector lying along the x and y-axes. The equation for the resultant vector, v is:

v = √(vx² + vy²)
v = √[(9.80)² + (-6.40)²]
v = √137 or 11.7 units
5 0
3 years ago
To heat 1g of water by 1 C requires<br> A) 1 calorie<br> b)1 Carlorie<br> c) 1 Joule<br> d) 1 watt
blsea [12.9K]
I think the answer would be 1 watt but i'm not sure
8 0
3 years ago
A descending elevator of mass 1,000 kg is uniformly decelerated to rest over a distance of 8 m by a cable in which the tension i
Stolb23 [73]

The speed  V_{i} of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.

We are given that-

the mass of the elevator (m) = 1000 kg ;

the distance the elevator decelerated to be y = 8m ;

the tension is T = 11000 N;

let us determine the acceleration 'a' by using Newton's second law of motion.

∑Fy = ma

W - T = ma

(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a

9800 - 11000 = 1000

a = - 1.2 m/s²

Using the equation of kinematics to determine the initial velocity.

V_{f} ² = V_{i}² + 2ay

V_{i} = √ ( 2 x 1.2m/s² x 8 m )

V_{i} = √19.2 m²/s²

V_{i} = 4.38 m/s   ≈ 4 m/s

Hence, the initial velocity of the elevator is 4m/s.

Read more about the Equation of kinematics:

brainly.com/question/12351668

#SPJ4

8 0
1 year ago
Other questions:
  • I need to know the answer and explanation if possible !
    12·1 answer
  • A 78.5-kg man is standing on a frictionless ice surface when he throws a 2.40-kg book horizontally at a speed of 11.3 m/s. With
    8·2 answers
  • Jose is batting for the home team when he hits a foul ball that rises straight up over home plate. A fan in the stands notices t
    10·1 answer
  • A 2.0 kg particle moves in a circle of radius 3.1 m. As you look down on the plane of its orbit, the particle is initially movin
    5·2 answers
  • A baseball is launched horizontally from a height of 1.8 m. The baseball travels 0.5 m before hitting the ground.
    11·1 answer
  • Two airplanes leave an airport at the same time and travel in opposite directions. One plane travels 87 km/h faster than the oth
    7·1 answer
  • HELP ME, PLEASE.
    15·2 answers
  • A5 kg box slides 3 m across the floor before coming to rest. What is the coefficient of kinetic friction between the floor and t
    5·1 answer
  • Can someone explain E=mc2<br> In FULL detail please
    12·1 answer
  • What is the force of gravity between two 50.0kg masses that are separated by 0.300m?3.71x10-8N5.59x10-7N2.78x104N1.85x10-6N
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!