Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N
in a one dimensional collision, a 4kg object with 5ms^1 and 6 kg object with 2ms^1 have initial velocity, the magnitude of impulse is 12 , 18
given,
mass 1 = 4kg
mass 2 = 6kg
velocity 1 = 5ms^1
velocity 2 = 2ms^1
impulse 1 = 4*(5-2)
= 12
Impulse 2 = 6*(5-2)
= 18
Learn more about impulse here
brainly.com/question/16980676
#SPJ4
Answer:
<em>The magnitude of vector d is 16 and the angle with the x-axis is 270°</em>
Explanation:
<u>Operations With Vectors</u>
Given two vectors in rectangular components:

The sum of the vectors is:

The difference between the vectors is:

The magnitude of
is:

The angle
makes with the horizontal positive direction is:

The question provides the vectors:



Calculate:

The magnitude of
is:

The angle is calculated by:

The division cannot be calculated because the denominator is zero. We need to estimate the correct angle by looking at the components of the vector. Since the x-coordinate is zero and the y-coordinate is negative, the vector points downwards (south), thus the angle must be -90° or 270° if the range goes from 0° to 360°.
The magnitude of vector d is 16 and the angle with the x-axis is 270°
Answer:
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015×10−34 when expressed in the unit J⋅s, which is equal to kg⋅m2⋅s−1, where the metre and the second are defined in terms of c and ΔνCs.