Answer:
<h3>
Young modulus of elasticity for a gas is</h3><h2>
<em>Zero</em></h2>
Explanation:
<em>As</em><em> </em><em>the</em><em> </em><em>gas</em><em> </em><em>doesn't</em><em> </em><em>undergo</em><em> </em><em>any</em><em> </em><em>chan</em><em>g</em><em>es</em><em> </em>
<em>so</em><em> </em><em>the</em><em> </em><em>young</em><em> </em><em>modules</em><em> </em><em>of</em><em> </em><em>gas</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>defined</em><em>.</em><em>.</em><em>.</em>
Answer:
The correct answer to the question is
B. It always decreases
Explanation:
To solve the question, we note that the foce of gravity is given by
where
G= Gravitational constant
m₁ = mass of first object
m₂ = mass of second object
r = the distance between both objects
If the mass of one object remains unchanged while the distance to the second object and the second object’s mass are both doubled, we have
= 
Therefore the gravitational force is halved. That is it will always decrease
Answer:
The work done on the canister by the 5.0 N force during this time is
54.06 Joules.
Explanation:
Let the initial kinetic energy of the canister be
KE₁ =
=
= 19.44 J in the x direction
Let the the final kinetic energy of the canister be
KE₂ =
=
= 73.5 J in the y direction
Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final
= 73.5 J - 19.44 J = 54.06 J
I think the distance that should be used is the distance that one expects to be from the game you are hunting. Before taking a shotgun for a gobbler or even for ducks or other animals, you need to see how your gun performs by patterning it at various ranges with the load you want to use.
Answer:
When they are connected in series
The 50 W bulb glow more than the 100 W bulb
Explanation:
From the question we are told that
The power rating of the first bulb is 
The power rating of the second bulb is 
Generally the power rating of the first bulb is mathematically represented as

Where
is the normal household voltage which is constant for both bulbs
So

substituting values

Thus the resistance of the second bulb would be evaluated as

From the above calculation we see that

This power rating of the first bulb can also be represented mathematically as

This power rating of the first bulb can also be represented mathematically as

Now given that they are connected in series which implies that the same current flow through them so

This means that

So when they are connected in series

This means that the 50 W bulb glows more than the 100 \ W bulb