A. Reactants, products
In a chemical reaction, reactants interact to form products
We have to know final temperature of the gas after it has done 2.40 X 10³ Joule of work.
The final temperature is: 75.11 °C.
The work done at constant pressure, W=nR(T₂-T₁)
n= number of moles of gases=6 (Given), R=Molar gas constant, T₂= Final temperature in Kelvin, T₁= Initial temperature in Kelvin =27°C or 300 K (Given).
W=2.4 × 10³ Joule (Given)
From the expression,
(T₂-T₁)=
(T₂-T₁)= 
(T₂-T₁)= 48.11
T₂=300+48.11=348.11 K= 75.11 °C
Final temperature is 75.11 °C.
The balanced equation for the above reaction is as follows;
<span>Fe</span>₂<span>O</span>₃<span> + 3 CO --> 2 Fe + 3 CO</span>₂
<span>stoichiometry of CO to Fe is 3:2
molar volume states that 1 mol of any gas occupies a volume of 22.4 L
If 22.4 L contains 1 mol of CO
Then 3.65 L contains - 1/22.4 x 3.65 = 0.16 mol
3 mol of CO forms 2 mol of Fe
Then 0.16 mol of CO forms - 2/3 x 0.16 = 0.1067 mol of Fe
Therefore mass of Fe produced - 0.1067 mol x 55.8 g/mol = 5.95 g</span>
Answer:
Enzyme function is dependent on the three-dimensional structure or conformation of the enzyme
Explanation:
Enzyme are biological catalysts.
So they do alter the path of the reaction where the free energy change (or activation energy) is low then the non enzymatic pathway.
Thus the statement
Enzymes alter the free energy change (ΔG) of the reactions which they catalyze : True
It is known that for enzyme we function they need an optimum temperature and pH condition so the statement
Enzyme function is dependent on the pH and temperature of the reaction environment: true
This is also true that
Enzyme activity can be inhibited if the enzyme is bound by a noncompetitive inhibitor.
The false statement is : Enzyme function is dependent on the three-dimensional structure or conformation of the enzyme
Answer:
W=-37.6kJ, therefore, work is done on the system.
Explanation:
Hello,
In this case, the first step is to compute the moles of each gas present in the given mixture, by using the total mixture weight the mass compositions and their molar masses:

Next, the total moles:

After that, since the process is isobaric, we can compute the work as:

Therefore, we need to compute both the initial and final volumes which are at 260 °C and 95 °C respectively for the same moles and pressure (isobaric closed system)

Thereby, the magnitude and direction of work turn out:

Thus, we conclude that since it is negative, work is done on the system (first law of thermodynamics).
Regards.