Answer:
A is true
Explanation:
Other all are wrong I guess
Answer:
λ = 8.88 x 10⁻⁷ m = 888 nm
Explanation:
The energy band gap is given as:
Energy Gap = E = 1.4 eV
Converting this to Joules (J)
E = (1.4 eV)(1.6 x 10⁻¹⁹ J/1 eV)
E = 2.24 x 10⁻¹⁹ J
The energy required for photovoltaic generation is given as:
E = hc/λ
where,
h = Plank's Constant = 6.63 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = ?
Therefore,
2.24 x 10⁻¹⁹ J = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2.24 x 10⁻¹⁹ J)
<u>λ = 8.88 x 10⁻⁷ m = 888 nm</u>
Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!
Answer:
Mass number - ⦁ The number of protons and neutrons in the nucleus of an atom.
Isotopes - ⦁ Atoms with the same number of protons, but different number of neutrons.
Nitrogen - ⦁ The name of the element with atomic number 7.
Atomic number - ⦁ The number of protons in the nucleus of an atom.
Answer:
(a) T = 0.015 N
(b) M = 1.53 x 10⁻³ kg = 1.53 g
Explanation:
(a) T = 0.015 N
First, we will find the speed of waves:

where,
v = speed of wave = ?
f = frequency = 120 Hz
λ = wavelength = 6 cm = 0.06 m
Therefore,
v = (120 Hz)(0.06 m)
v = 7.2 m/s
Now, we will find the linear mass density of the coil:

where,
μ = linear mass density = ?
m = mass = 1.45 g = 1.45 x 10⁻³ kg
l = length = 5 m
Thereforre,

Now, for the tension we use the formula:

<u>T = 0.015 N</u>
<u></u>
(b)
The mass to be hung is:

<u>M = 1.53 x 10⁻³ kg = 1.53 g</u>