Answer:
A) 140 k
b ) 5.22 *10^3 J
c) 2910 Pa
Explanation:
Volume of Monatomic ideal gas = 1.20 m^3
heat added ( Q ) = 5.22*10^3 J
number of moles (n) = 3
A ) calculate the change in temp of the gas
since the volume of gas is constant no work is said to be done
heat capacity of an Ideal monoatomic gas ( Q ) = n.(3/2).RΔT
make ΔT subject of the equation
ΔT = Q / n.(3/2).R
= (5.22*10^3 ) / 3( 3/2 ) * (8.3144 J/mol.k )
= 140 K
B) Calculate the change in its internal energy
ΔU = Q this is because no work is done
therefore the change in internal energy = 5.22 * 10^3 J
C ) calculate the change in pressure
applying ideal gas equation
P = nRT/V
therefore ; Δ P = ( n*R*ΔT/V )
= ( 3 * 8.3144 * 140 ) / 1.20
= 2910 Pa
Answer:
The answer to your question is:
a) 2.7 m/s²
b) -3.6 m/s²
Explanation:
Data
mass of the toolbox = 3.2 kg
a = ?
F = 40 N and F = 20 N
g = 9.81 m/s²
Formula
Second law of motion = F = ma
a + g = F / m
a = F/m - g
a) a = 40/3.2 - 9.81
a = 2.69 ≈ 2.7 m/s² positive up
b) a = 20/ 3.2 - 9.81
a = 6.25 - 9.81
= - 3.56 ≈ - 3.6 m/s² negative down
Answer:
7.5s
Explanation:
Given parameters:
Velocity = 30m/s
Deceleration = 4m/s²
Unknown:
Time it takes for the car to come to complete rest = ?
Solution:
To solve this problem, we use the kinematics expression below:
v = u + at
Since this is a deceleration
v = u - at
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time taken
v - u = -at
0 - 30 = -4 x t
-30 = -4t
t = 7.5s
Answer:
6.77 minutes
Explanation:
172 degree - 78 degree = (185 degree - 78 degree)e−2 k
=> 94 = 107
e−2 k => 94 ÷ 107
k => ln (94÷107) / 2
147 - 78 = (185 - 78)e ^[ln (94÷107) / 2]
=> 69 = 107 e^ [ln (94÷107) / 2]
e^[ln (94÷107) / 2] =69 ÷ 107
=> t = [ln (69 ÷ 107)] ÷ [ln (94÷107) / 2]
t=> -0.4387 ÷ -0.0648
t => 6.77 minutes.
Therefore, the final answer to the question is 6.77 minutes.
Answer:
F = 852 N
Explanation:
We apply Newton's second law to the trailer :
F = m*a Formula (1)
F : net force exerted by the truck on the trailer Newtons (N)
m : mass of the trailer in kilograms (kg)
a : acceleration of the trailer in meters over second square (m/s²)
Data
a=1.20 m/s² : acceleration of the trailer
m=710 kg : mass of the trailer
We replace data in the Formula (1) to calculate the net force exerted by the truck on the trailer
F = (710 kg)*(1.20 m/s²)
F = 852 N