Answer
512kj/mole
Explanation:
What is the work function of gold metal in kJ/mol if light with λ = 234 nm is necessary to eject electrons?
The energy can be calculated using below expresion;
E = hc/λ
Where h= planks constant= 6.626 x 10^-34
c= speed of light= 3 x 10^
λ= wavelength
hc= (6.626 x 10^-34 x 3 x 10^ 8)
=
Answer: There are 3.2 moles of gas if you have a volume of 38.0 L under a pressure of 1430 mmHg at standard temperature.
Explanation:
Given: Volume = 38.0 L
Pressure = 1430 mm Hg (1 mm Hg = 0.00131579 atm) = 1.9 atm
Temperature = 273.15 K
Using ideal gas equation, the moles of gas will be calculated as follows.

where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T =temperature
Substitute the values into above formula as follows.

Thus, we can conclude that there are 3.2 moles of gas if you have a volume of 38.0 L under a pressure of 1430 mmHg at standard temperature.
<span>8.1487647e+22 is the answer.
</span>
Answer:
Then, when students pulled the plastic through their fingers, electrons from their skin got onto the plastic. Since the plastic has more electrons than protons, it has a negative charge.
<u>Have a good morning, afternoon, or night!</u>
<u></u>
~<u>Dreamer1331</u>~
<u>*Please mark brainliest when possible and if you feel i deserve it, thank you!*</u>
Answer:
ΔH = -55.92 kJ
Explanation:
<u>Step 1:</u> Data given
1 mol NaOH and 1 mol HBr initially at 22.5 °C are mixed in 100g of water
After mixing the temperature rises to 83 °C
Specific heat of the solution = 4.184 J/g °C
Molar mass of NaOH = 40 G/mol
Molar mass of HBr = 80.9 g/mol
<u>Step 2: </u>The balanced equation
NaOH + HBr → Na+(aq) + Br-(aq) + H2O(l)
<u>Step 3:</u> mass of NaOH
Mass = moles * Molar mass
Mass NaOH = 1 * 40 g/mol
Mass NaOH = 40 grams
Step 4: Mass of HBr
Mass HBr = 1 mol * 80.9 g/mol
Mass HBr = 80.9 grams
Step 5: Calculate ΔH
ΔH = m*c*ΔT
ΔH= (100 + 40 + 80.9) * 4.184 * (83-22.5)
ΔH= 220.9 * 4.184 * 60.5
ΔH= 55916.86 J = 55.92 kJ
Since this is an exothermic reaction, the change in enthalpy is negative.
ΔH = -55.92 kJ