Answer:
El agua oxigenada se encuentra en cuatro concentraciones diferentes expresadas “en tanto por ciento”: 8%, 30%, 35% y 50%. Sin embargo, hay quien prefiere hablar de “volúmenes” y no de “porcentajes”.
Answer:
what is this I am not getting which type of this question you have taken from where
Answer:
The molar solubility of lead bromide at 298K is 0.010 mol/L.
Explanation:
In order to solve this problem, we need to use the Nernst Equaiton:
![E = E^{o} - \frac{0.0591}{n} log\frac{[ox]}{[red]}](https://tex.z-dn.net/?f=E%20%3D%20E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D)
E is the cell potential at a certain instant, E⁰ is the cell potential, n is the number of electrons involved in the redox reaction, [ox] is the concentration of the oxidated specie and [red] is the concentration of the reduced specie.
At equilibrium, E = 0, therefore:
![E^{o} = \frac{0.0591}{n} log \frac{[ox]}{[red]} \\\\log \frac{[ox]}{[red]} = \frac{nE^{o} }{0.0591} \\\\log[red] = log[ox] - \frac{nE^{o} }{0.0591}\\\\[red] = 10^{ log[ox] - \frac{nE^{o} }{0.0591}} \\\\[red] = 10^{ log0.733 - \frac{2x5.45x10^{-2} }{0.0591}}\\\\](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20%20%3D%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%5C%5C%5C%5Clog%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%3D%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%20%5C%5C%5C%5Clog%5Bred%5D%20%3D%20%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%7D%20%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log0.733%20-%20%20%5Cfrac%7B2x5.45x10%5E%7B-2%7D%20%20%7D%7B0.0591%7D%7D%5C%5C%5C%5C)
[red] = 0.010 M
The reduction will happen in the anode, therefore, the concentration of the reduced specie is equivalent to the molar solubility of lead bromide.
Answer is: ph value of pyridine solution is 9.1.
Chemical
reaction: C₅H₅N +
H₂O → C₅H₅NH⁺ + OH⁻.<span>
c(pyridine - C</span>₅H₅N)
= 0.115M.<span>
Kb(C</span>₅H₅N)
= 1.4·10⁻⁹.
[C₅H₅NH⁺] = [OH⁻] = x; equilibrium concentration.<span>
[</span>C₅H₅N] =
0.115 M - x.
Kb = [C₅H₅NH⁺] · [OH⁻] / [C₅H₅N].
1.4·10⁻⁹ = x² / (0.115 M -x)
Solve quadratic equation: x = [OH⁻] = 0.0000127 M.<span>
pOH = -log(0.0000127 M) = 4.9</span>
<span>pH = 14 - 4.9 = 9.1.</span>
Answer:
n₂ = 2.55 mol
Explanation:
Given data:
Initial number of moles = 0.758 mol
Initial volume = 80.6 L
Final volume = 270.9 L
Final number of moles = ?
Solution:
Formula:
V₁/n₁ = V₂/n₂
V₁ = Initial volume
n₁ = initial number of moles
V₂ = Final volume
n₂ = Final number of moles
now we will put the values in formula.
V₁/n₁ = V₂/n₂
80.6 L / 0.758 mol = 270.9 L/ n₂
n₂ = 270.9 L× 0.758 mol / 80.6 L
n₂ = 205.34 L.mol /80.6 L
n₂ = 2.55 mol