Answer:
Explanation:
The wheel and falling student will have common acceleration .
For rotational motion of wheel
Tx r = I α , T is tension in the crank , α is angular acceleration of wheel , I is moment of inertia , r is radius of the wheel.
= I a / r
T = I a / r²
For motion of student
Mg - T = Ma , M is mass of the wheel.
Mg - I a / r² = Ma
Mg = Ma +I a / r²
Mg = (M +I / r²)a
a = Mg / (M +I / r²)
= 51 x 9.8 / ( 51 + 9.6 / .3² )
499.8 / (51+ 106.67 )
= 499.8 / 157.67
= 3.17 m / s².
If time t is taken to fall by 12 m
12 = 1/2 a t²
24 / a = t²
24 / 3.17 =t²
t²= 7.57
t = 2.75 s
velocity to reach sidewalk
v = u + at
= 3.17 x 2.75
= 8.72 m / s
Answer:
The answer to your question is below
Explanation:
To explain what happens with the ball we must remember the Law of Conservation of Energy.
This law states that the energy can be neither created nor destroyed only converted from one form of energy to another.
Then,
At the top of the hill, the potential energy is maximum and the kinetic energy equals to zero.
When the ball starts to roll down the potential energy will be lower and the kinetic energy will have a low value.
At the middle of the hill, both energies have the same values.
At the end of the hill, the potential energy will be equal to zero and the kinetic energy will be maximum.
Velocity and acceleration are vector quantities whereas speed, temperature and age are not.
<h3>What is a vector quantity?</h3>
Vector is a quantity that has both magnitude and direction and is represented by an arrow whose direction is same as that of the quantity and length is proportional to the quantity's magnitude.
Vector has magnitude and direction but it does not have position. Velocity and acceleration both are vector quantities as they have magnitude and direction.
If the speed of an object remains same but direction changes then the object is accelerating. It is important to remember that acceleration and velocity aren't always in the same direction.
To know more about vector quantity, refer
brainly.com/question/626479
#SPJ1
The amount of air resistance<span> an </span>object<span> experiences depends on its speed, its cross-sectional area, its shape and the density of the </span>air<span>. </span>Air<span> densities vary with altitude, temperature and humidity. Nonetheless, 1.29 kg/m</span>3<span> is a very reasonable value. The shape of an </span>object affects<span> the drag coefficient (C</span>d<span>)</span>
Answer:
Both technicians are right, to be able to make a threaded joint you need to use the external thread on one part of the rod using the tap and die set, and on the other side of the rod you need to have an internal thread using the thread repair insert kit