-- find the horizontal and vertical components of F1.
-- find the horizontal and vertical components of F2.
-- find the horizontal and vertical components of F3.
-- add up the 3 horizontal components; their sum is the horizontal component of the resultant.
-- add up the 3 vertical components; their sum is the vertical component of the resultant.
-- the magnitude of the resultant is the square root of (vertical component^2 + horizontal component^2)
-- the direction of the resultant is the angle whose tangent is (vertical component/horizontal component), starting from the positive x-direction.
Answer:
The voltage will be 0.0125V
Explanation:
See the picture attached
Answer:
Explanation:
Energy stored in a capacitor
= 1/2 CV²
C is capacitance and V is potential of the capacitor .
When capacitor is charged to 24 V ,
E₁ = 1/2 x 2.4 x 24 x24 = 691.2 J
When it is charged to 12 volt
E₂ = 1/2 CV²
.5 X 2.4 X 12 X12
= 172.8 J
Answer:
c
Explanation:
it's the only one that makes sense
The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!
<span>PE=−[G<span>M1</span><span>M2</span>]÷R
</span><span>
Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>