Answer: MR²
is the the moment of inertia of a hoop of radius R and mass M with respect to an axis perpendicular to the hoop and passing through its center
Explanation:
Since in the hoop , all mass elements are situated at the same distance from the centre , the following expression for the moment of inertia can be written as follows.
I = ∫ r² dm
= R²∫ dm
MR²
where M is total mass and R is radius of the hoop .
The spring constant is 4 N/m
Explanation:
When a spring is stretched/compressed by the application of a force, the relationship between the magnitude of the force applied and the elongation of the spring is given by Hooke's law:

where
F is the magnitude of the spring applied
k is the spring constant
x is the elongation of the spring, relative to its equilibrium position
For the spring in this problem, we have:
F = 0.12 N (force applied)
x = 3 cm = 0.03 m (elongation of the spring)
Therefore, we can solve the formula for k to find the spring constant:

Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:
μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
W₁ x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
cos 60 = x / L
where L is the length of the ladder
x = L cos 60
sin 60 = y / L
y = L sin60
the horizontal distance of man is
cos 60 = x2 / 7.0
x2 = 7 cos 60
we substitute
m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
fr = (735 + 2450) / 8.66
fr = 367.78 N
the friction force has the expression
fr = μ N
write the translational equilibrium equation
N - W₁ -W₂ = 0
N = m₁ g + W₂
N = 30 9.8 + 700
N = 994 N
we clear the friction force from the eucacion
μ = fr / N
μ = 367.78 / 994
μ = 0.37
According to the statement " Collision <span>between two bodies in which the total kinetic energy of the two bodies after the collision is equal to their total kinetic energy before the collision."
The best answer is :
Option A " </span><span>BODY A COMES TO REST BODY B STARTS MOVING WITH INITIAL VELOCITY OF BODY A "</span>