Answer:
The food coloring mixes through the hot water faster than it mixes with the cold water. This is because in hot water, thewater molecules have more energy and are moving faster than the molecules of cold water. This makes it easier for the dye to get mixed throughout the hot water.
Answer:
If your lab has litmus paper, you can use it to determine your solution's pH. When you place a drop of a solution on the litmus paper, the paper changes color based on the pH of the solution. Once the color changes, you can compare it to the color chart on the paper's package to find the pH.
Explanation:
A solution's pH will be a number between 0 and 14. A solution with a pH of 7 is classified as neutral. If the pH is lower than 7, the solution is acidic. When pH is higher than 7, the solution is basic. These numbers describe the concentration of hydrogen ions in the solution and increase on a negative logarithmic scale.
For example, If Solution A has a pH of 3 and Solution B has a pH of 1, then Solution B has 100 times as many hydrogen ions than A and is therefore 100 times more acidic.
Answer:
Initial rate method
Explanation:
The initial rate of the reaction is dictated by the different concentrations of one reactant, while other reactants remain constant.
Answer:
Divide the mass of the compound in grams by the molar mass you just calculated. The answer is the number of moles of that mass of compound
Explanation:
Answer : The molar mass of an acid is 266.985 g/mole
Explanation : Given,
Mass of an acid (HX) = 4.7 g
Volume of NaOH = 32.6 ml = 0.0326 L
Molarity of NaOH = 0.54 M = 0.54 mole/L
First we have to calculate the moles of NaOH.

Now we have to calculate the moles of an acid.
In the titration, the moles of an acid will be equal to the moles of NaOH.
Moles of an acid = Moles of NaOH = 0.017604 mole
Now we have to calculate the molar mass of and acid.

Now put all the given values in this formula, we get:


Therefore, the molar mass of an acid is 266.985 g/mole