Answer:
5.55 L
Explanation:
This excersise can be solved by the Boyle's law.
This law for gases states that the pressure of a gas in a vessel is inversely proportional to the volume of the vessel.
P₁ . V₁ = P₂ . V₂
The law comes from the Ideal Gases Law, in the first term.
P . V = n . R . T In this case, n . R . T are all constant.
6.35 L . 88.6 kPa = 101.3 kPa . V₂
V₂ = (6.35 L . 88.6 kPa) / 101.3 kPa
V₂ = 5.55 L
It is inversely proportional because, as it happened in this case, pressure was increased, therefore volume decreased.
4.48 mol Cl2. A reaction that produces 0.35 kg of BCl3 will use 4.48 mol of Cl2.
(a) The <em>balanced chemical equation </em>is
2B + 3Cl2 → 2BCl3
(b) Convert kilograms of BCl3 to moles of BCl3
MM: B = 10.81; Cl = 35.45; BCl3 = 117.16
Moles of BCl3 = 350 g BCl3 x (1 mol BCl3/117.16 g BCl3) = 2.987 mol BCl3
(c) Use the <em>molar ratio</em> of Cl2:BCl3 to calculate the moles of Cl2.
Moles of Cl2 = 2.987 mol BCl3 x (3 mol Cl2/2 mol BCl3) = 4.48 mol Cl2
Explanation:
According to the analysis, Molarity is amount mole per volume(1L). the amount in mole would be molarity × volume in litres.
0.500M × (250/1000)L= 0.125moles.
I hope this helps**