Answer:
The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
Explanation:
The combined gas equation is,

where,
= initial pressure of gas = 104 kPa
= final pressure of gas = 52 kPa
= initial volume of gas = 
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
Answer:
CaCO₃(s) → CaO(s) + CO₂(g)
Explanation:
The decomposition reaction always make two compounds from one.
The products always have simpler chemical structure, originated from a determined compound. This can happens spontaneously or by a third party.
A notable example of decomposition is hydrolysis. As for example the case of water, which decomposes and generates oxygen and hydrogen gas
2H₂O (l) → 2 H₂ (g) + O₂ (g)
In this case, the calium carbonate decomposes into CaO and CO₂
These two, are the products of the decomposition.
Of course, the unique reactant is the Calcium Carbonate
The balanced equation is:
CaCO₃(s) → CaO(s) + CO₂(g)
The increase in the boiling point of a solvent is a colligative property.
That means that the increase in the boling point will be related to the number of particles (molecules or ions) present in the solution.
The higher the number of particles (molecules or ions) the higher the increase in the boiling point.
All the aqueous solutions presented are electrolytes, i.e. the solutes are ionic compounds.
Then, you have to compare the number of ions that you have in each solution.
A) 1.0 M KCl ---> 1.0 M K+ + 1.0 MCl- = 2 moles of particles / liter
B) 1.0 M CaCl2 --> 1.0M Ca(2+) + 1.0M * 2 Cl (-) = 3 moles of particle / liter
C) 2.0M KCl ---> 2.0 M K+ + 2.0 M Cl- = 4 moles of particle / liter
D) 2.0 M CaCl2 ----> 2.0 M Ca (2+) + 2.0M * 2 Cl (-) = 6 moles of particle / liter.
Then, the solution 2.0M CaCl2(aq) has the highest increase in the boiling point.
Answer: option D) 2.0 M Ca Cl2(aq)
Answer:
<em>One mole of anything is 6.022×1023 everythings, including atoms. Multiply the moles Fe by 6.022×1023 atoms/mol. 3.77mol Fe ×6.022×1023atoms Fe1mol Fe =2.27×1024 atoms Fe rounded to three significant figures.</em>