OH
*inserts random text so that this answer can be posted reaching the needed amount of words.*
For the purpose we will here use t<span>he ideal gas law:
p</span>×V=n×R×<span>T
V= </span><span>5.0 L
T= </span><span>373K
p= </span><span>203kPa
</span><span>
R is </span> universal gas constant, and its value is 8.314 J/mol×<span>K
</span>
Now when we have all necessary date we can calculate the number of moles:
n=p×V/R×T
n= 203 x 5 / 8.314 x 373 = 0.33 mole
Answer:
As the Bohr's fixed orbit gives precise information about the radial position and momentum of the orbit, it is against the Heisenberg uncertainty principle. Thus it is inferred that the Heisenberg uncertainty principle goes and the concept Bohr's fixed Orbit are opposite to each other.
Explanation:
<span>London dispersion forces
is the weakest intermolecular force. It is a temporary force that happens when
electrons of two adjacent atoms occupy positions that make atoms form dipoles
which are temporary dipoles. This is also referred as dipole-dipole attraction.</span>
<span>Fluorine ONLY form\s an ion with a -1 charge. The other three are metals, and metals for positively charged ions.</span>