Answer:
<em>The work done by the car is 363 kJ</em>
Explanation:
Work : Work is said to be done when a Force moves an object through a certain distance. Work and Energy are interchangeable because they have the same unit. The unit of work is Joules (J).
Mathematically work done can be expressed as,
E = W = 1/2mv²
W = 1/2mv²................................ Equation 1
Where E = Energy, W = work done, m = mass of the car, v = velocity of the car
<em>Given: m=1500 kg, v=22 m/s</em>
<em>Substituting these values into equation 1</em>
<em>W = 1/2(1500)(22)²</em>
<em>W = 750 × 484</em>
<em>W = 363000 J</em>
<em>W = 363 kJ</em>
<em>Thus the work done by the car is 363 kJ</em>
The melting of polar ice is one effect of the greenhouse effect, or also global warming.
The greenhouse effect, as defined by Merriam-Webster, is "the <span>warming of the surface and lower atmosphere of a planet (as Earth or Venus) that is caused by conversion of solar radiation into heat in a process involving selective transmission of short wave solar radiation by the atmosphere, its absorption by the planet's surface, and reradiation as infrared which is absorbed and partly reradiated back to the surface by atmospheric gases".
In short, "</span>the warming of the surface and lower atmosphere of a planet".
the correct choice is
C) an electric current.
as a magnet is turned quickly relative to a coil, the magnetic flux linked with coil varies due to variation of angle of direction of magnetic field with normal to the plane of coil. the coil resist this change of magnetic flux in it by inducing emf in it so as to nullify the variation in magnetic flux. Due to this induced emf , electric current flows through the coil.
Answer:
2.83
Explanation:
Kepler's discovered that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit, that is called Kepler's third law of planet motion and can be expressed as:
(1)
with T the orbital period, M the mass of the sun, G the Cavendish constant and a the semi major axis of the elliptical orbit of the planet. By (1) we can see that orbital period is independent of the mass of the planet and depends of the semi major axis, rearranging (1):
(2)
Because in the right side of the equation (2) we have only constant quantities, that implies the ratio
is constant for all the planets orbiting the same sun, so we can said that:



