Answer:
4.17 m/s²
Explanation:
We are told the reaction time is 0.2 s. Now, during this reaction time the car is going to travel an additional distance of
: x = u × t = 40 × 0.2 = 8 m
where u is the initial velocity of the car which is 40.0 m/s.
We are told that he had 200 m to stop before applying brakes. Thus, after applying brakes, he now has a distance to cover of; s = 200 - 8 = 192 m
Since vehicle is coming to rest acceleration would be negative, thus using Newton's equation of motion, we have;
v
² = u² - 2as
v = 0 m/s since it's coming to rest
u = 40 m/s
s = 192 m
Thus;
0² = 40² - 2(a)(192)
0² = 1600 - 384a
a = 1600/384
a = 4.17 m/s²
B. In step 3
They incorrectly solved for x. It should have been x=-3 and x=5
Answer:
A
Explanation:
It varies from person to person.
Answer:

Explanation:
Given
Mass = 10kg
Velocity = 2m/s
Required
Calculate the momentum of the man
Momentum is calculated as thus
or

So; to solve this question; we simply substitute 10kg for mass and 2m/s for velocity in the above formula;
The formula becomes



Hence, the momentum of the man is 
Force = (mass) x (acceleration) (Newton's second law of motion)
Divide both sides of the equation by 'acceleration', and you have
Mass = (force) / (acceleration)
Mass = 17 newtons / 3.75 meters per second-sqrd = 4.533 kilograms (rounded)