Answer:
B 8-9 because you had to subtract that number or simplify. then your answer is 8-9
The mass of a radioactive element at time t is given by

where

is the mass at time zero, while

is the half-life of the element.
In our problem,

, t=121.0 s and

, so we can find the initial mass

:
Answer:
Yes, since the choice of the zero o potential energy is arbitrary.
Explanation:
The kinetic energy is due to the motion of the object. The expression for the kinetic energy is as follows;

Here, m is the mass of the object and v is the velocity of the object.
The kinetic energy can not be negative as the velocity is squared. It can be zero and positive.
Potential energy: It is the energy is due to the position of the object.
The expression for the potential energy is as follows;
PE= mgh
Here, g is the acceleration due to gravity and height.
Height can be taken from the reference point, zero which can be taken below zero and above zero. Zero is taken as origin. Below zero, the height is taken as negative and above zero, the height is taken as positive.
The potential energy can be zero, positive and negative.
The total energy is the sum of kinetic energy and potential energy.
E= KE + PE
Here, KE is the kinetic energy and PE is the potential energy.
Therefore, the option (B) is correct.
I believe the answer is C, 3
When you shine a lite through a prism is reflects out light through all of the edges and causes light separation. Or just simply shine a laser through the edge of a sideways piece of glass.
I hope that this was helpful for you.