Answer:
B.) 1.3 atm
Explanation:
To find the new pressure, you need to use Gay-Lussac's Law:
P₁ / T₁ = P₂ / T₂
In this equation, "P₁" and "T₁" represent the initial pressure and temperature. "P₂" and "T₂" represent the final pressure and temperature. After converting the temperatures from Celsius to Kelvin, you can plug the given values into the equation and simplify to find P₂.
P₁ = 1.2 atm P₂ = ? atm
T₁ = 20 °C + 273 = 293 K T₂ = 35 °C + 273 = 308 K
P₁ / T₁ = P₂ / T₂ <----- Gay-Lussac's Law
(1.2 atm) / (293 K) = P₂ / (308 K) <----- Insert values
0.0041 = P₂ / (308 K) <----- Simplify left side
1.3 = P₂ <----- Multiply both sides by 308
Answer:
Cd(s) + AgNO₃(aq) → Cd(NO₃)₂ (aq) + Ag(s)
Oxidized: Cd
Reduced: Ag
Explanation:
Cd(s) + AgNO₃(aq) → Cd(NO₃)₂ (aq) + Ag(s)
Cd → Cd²⁺ + 2e⁻ Half reaction oxidation
1e⁻ + Ag⁺ → Ag Half reaction reduction
Ag changed oxidation number from +1 to 0
Cd changed oxidation number from 0 to +2
Let's ballance the electrons
( Cd → Cd²⁺ + 2e⁻ ) .1
( 1e⁻ + Ag⁺ → Ag ) .2
Cd + 2e⁻ + 2Ag⁺ → 2Ag + Cd²⁺ + 2e⁻
Finally the ballance equation is:
Cd(s) + 2AgNO₃(aq) → Cd(NO₃)₂ (aq) + 2Ag(s)
The number of moles of gas lost is 0.0213 mol. It can be solved with the help of Ideal gas law.
<h3>What is Ideal law ?</h3>
According to this law, "the volume of a given amount of gas is directly proportional to the number on moles of gas, directly proportional to the temperature and inversely proportional to the pressure. i.e.
PV = nRT.
Where,
- p = pressure
- V = volume (1.75 L = 1.75 x 10⁻³ m³)
- T = absolute temperature
- n = number of moles
- R = gas constant, 8.314 J*(mol-K)
Therefore, the number of moles is
n = PV / RT
State 1 :
- T₁ = (25⁰ C = 25+273 = 298 K)
- p₁ = 225 kPa = 225 x 10³ N/m²
State 2 :
- T₂ = 10 C = 283 K
- p₂ = 185 kPa = 185 x 10³ N/m²
The loss in moles of gas from state 1 to state 2 is
Δn = V/R (P₁/T₁ - P₂/T₂ )
V/R = (1.75 x 10⁻³ m³)/(8.314 (N-m)/(mol-K) = 2.1049 x 10⁻⁴ (mol-m²-K)/N
p₁/T₁ = (225 x 10³)/298 = 755.0336 N/(m²-K)
p₂/T₂ = (185 x 10³)/283 = 653.7102 N/(m²-K)
Therefore,
Δn = (2.1049 x 10⁻⁴ (mol-m²-K)/N)*(755.0336 - 653.7102 N/(m²-K))
= 0.0213 mol
Hence, The number of moles of gas lost is 0.0213 mol.
Learn more about ideal gas here ;
https://brainly.in/question/641453
#SPJ1
Answer:
76,6 kg
Explanation:
A kg it's equal to 1x10^3 grams
A Gigagrams it's equal to 1x10^9 grams
Knowing this, a kg it's equal to 1x10^6 gigagrams
![7,66*10^{-5}[gigagram]*\frac{1*10^6 [kg]}{1 [gigagram]}= 76.6 [kg]](https://tex.z-dn.net/?f=7%2C66%2A10%5E%7B-5%7D%5Bgigagram%5D%2A%5Cfrac%7B1%2A10%5E6%20%5Bkg%5D%7D%7B1%20%5Bgigagram%5D%7D%3D%2076.6%20%5Bkg%5D)
Answer:
Explanation:
Work function of potassium = 2.29 eV = 3.67 X 10⁻¹⁹ J
So the minimum energy of photon must be equal to 3.67 X 10⁻¹⁹ J .
energy of photon of wavelength λ = hc / λ
where h = 6.67 x 10⁻³⁴
c = 3 x 10⁸
Putting the values in the equation above
6.67 x 10⁻³⁴ x 3 x 10⁸ / λ = 3.67 X 10⁻¹⁹
λ = 6.67 x 10⁻³⁴ x 3 x 10⁸ / 3.67 X 10⁻¹⁹
= 5.452 x 10⁻⁷
= 5452 x 10⁻¹⁰ m
= 5452 A .