In object in motion stays in motion; speed
Answer:
A body will become positively charged when some electrons will come out from the body.Thus, positive charge is due to deficiency of electrons.
Answer:
5.5 km
Explanation:
First, we convert the distance from km/h to m/s
910 * 1000/3600
= 252.78 m/s
Now, we use the formula v²/r = gtanθ to get our needed radius
making r the subject of the formula, we have
r = v²/gtanθ, where
r = radius of curvature needed
g = acceleration due to gravity
θ = angle of banking
r = 252.78² / (9.8 * tan 50)
r = 63897.73 / (9.8 * 1.19)
r = 63897.73 / 11.662
r = 5479 m or 5.5 km
Thus, we conclude that the minimum curvature radius needed for the turn is 5.5 km
Here's the tool you need. You can't answer the question without this:
"1 watt"
means
"1 joule of energy, generated, used, or moved, every second".
So 60 watts = 60 joules per second
Total energy generated,
used, or moved = (power) x (time).
580 joules = (60 watts) x (time)
Divide each side
by (60 watts): Time = (580 joules) / (60 joules/sec)
= (9 and 2/3) seconds .
Answer:
0.0061 J
Explanation:
Parameters given:
Number of turns, N = 111
Radius of turn, r = 2.11 cm = 0.0211 m
Resistance, R = 14.1 ohms
Time taken, t = 0.125 s
Initial magnetic field, Bin = 0.669 T
Final magnetic field, Bfin = 0 T
The energy dissipated in the resistor is given as:
E = P * t
Where P = Power dissipated in the resistor
Power, P, is given as:
P = V² / R
Hence, energy will be:
E = (V² * t) / R
To find the induced voltage (EMF), V:
EMF = [-(Bfin - Bin) * N * A] / t
A is Area of coil
EMF = [-(0 - 0.669) * 111 * pi * 0.0211²] / 0.125
EMF = 0.83 V
Hence, the energy dissipated will be:
E = (0.83² * 0.125) / 14.1
E = 0.0061 J