1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aneli [31]
3 years ago
15

The Franck-Hertz experiment involved shooting electrons into a low-density gas of mercury atoms and observing discrete amounts o

f kinetic energy loss by the electrons. Suppose instead a similar experiment is done with a very cold gas of atomic hydrogen, so that all of the hydrogen atoms are initially in the ground state. If the kinetic energy of an electron is 11.1 eV just before it collides with a hydrogen atom, how much kinetic energy will the electron have just after it collides with and excites the hydrogen atom? Kfinal = eV
Physics
1 answer:
Anuta_ua [19.1K]3 years ago
6 0

Answer:

the final kinetic energy is 0.9eV

Explanation:

To find the kinetic energy of the electron just after the collision with hydrogen atoms you take into account that the energy of the electron in the hydrogen atoms are given by the expression:

E_n=\frac{-13.6eV}{n^2}

you can assume that the shot electron excites the electron of the hydrogen atom to the first excited state, that is

E_{n_2-n_1}=-13.6eV[\frac{1}{n_2^2}-\frac{1}{n_1^2}]\\\\E_{2-1}=-13.6eV[\frac{1}{2^2}-\frac{1}{1}]=-10.2eV

-10.2eV is the energy that the shot electron losses in the excitation of the electron of the hydrogen atom. Hence, the final kinetic energy of the shot electron after it has given -10.2eV of its energy is:

E_{k}=11.1eV-10.2eV=0.9eV

You might be interested in
Explain why wedges and screws are actually types of inclined planes.
slava [35]
<span>The screw is really just an inclined plane covered around with a tiny pole. The wedge is definitely an inclined plane, since it starts with a point, then rises getting thicker, as an inclined plane. </span>
5 0
4 years ago
Read 2 more answers
using mass and distance, identify and compare the sun's and moon's contribution to the formation of tides on earth
vekshin1

Answer:

Based on its mass, the sun's gravitational attraction to the Earth is more than 177 times greater than that of the moon to the Earth.

7 0
3 years ago
Help!!!, combination circuits, Physics
Kaylis [27]

Current and voltage on each resistor:

I_1 = 3.98 A, V_1 = 3.98 V

I_2=0.015 A, V_2 = 0.075 V

I_3 = 0.4 A, V_3 = 0.4 V

I_4 = 0.385 A, V_4 = 0.77 V

I_5 = 0.585 A, V_5 = 1.17 V

I_6 = 3.01 A, V_6 = 6.02 V

I_7 = 0.97 A, V_7 = 4.85 V

Explanation:

In order to solve the circuit, we first have to find the equivalent resistance of the whole circuit, then the total current, and then we can proceed finding the current and the voltage for each resistor.

We start by calculating the equivalent resistance of resistors 2 and 3, which are in parallel:

R_{23}=\frac{R_2R_3}{R_2+R_3}=\frac{(5)(1)}{5+1}=0.833\Omega

This resistor is in series with resistor 4, so:

R_{234}=R_{23}+R_4=0.833+2.0=2.833\Omega

This resistor is in parallel with resistor 5, therefore:

R_{2345}=\frac{R_{234}R_5}{R_{234}+R_5}=\frac{(2.833)(2.0)}{2.833+2.0}=1.172\Omega

This resistor is in series with resistor 7, so:

R_{23457}=R_{2345}+R_7=1.172+5.0=6.172\Omega

This resistor is in parallel with resistor 6, so:

R_{234567}=\frac{R_{23457}R_6}{R_{23457}+R_6}=\frac{(6.172)(2.0)}{6.172+2.0}=1.510\Omega

Finally, this combination is in series with resistor 1:

R_{eq}=R_1+R_{234567}=1.0+1.510=2.510\Omega

We finally found the equivalent resistance of the circuit. Now we can find the total current in the circuit, which is also the current flowing through resistor 1:

I_1=\frac{V}{R_{eq}}=\frac{10}{2.510}=3.98 A

And we can also find the potential difference across resistor 1:

V_1=I_1 R_1=(3.98)(1.0)=3.98 V

This means that the voltage across resistor 6 is

V_6=V-V_1=10-3.98=6.02 V

And so, the current on resistor 6 is

I_6=\frac{V_6}{R_6}=\frac{6.02}{2.0}=3.01 A

The current flowing in the whole part of the circuit containing resistors 2,3,4,5,7, and therefore through resistor 7, is

I_7=I-I_6=3.98-3.01=0.97 A

And so the voltage across resistor 7 is

V_7=I_7 R_7=(0.97)(5.0)=4.85 V

The voltage across resistor 5 is

V_5 = V_6 - V_7 = 6.02 - 4.85 =1.17 V

And so the current is

I_5 = \frac{V_5}{R_5}=\frac{1.17}{2.0}=0.585 A

The current through resistor 4 is

I_4 = I_7 - I_5 = 0.97-0.585 = 0.385 A

And therefore its voltage is

V_4=I_4 R_4 = (0.385)(2.0)=0.77 V

So, the voltage through resistor 3 is

V_3=V_5-V_4=1.17-0.77=0.4 V

And the current is

I_3=\frac{V_3}{R_3}=\frac{0.4}{1.0}=0.4 A

Finally, the current through resistor 2 is

I_2=I_4-I_3=0.5-0.385=0.015 A

And so its voltage is

V_2=I_2R_2=(0.015)(5.0)=0.075 V

Learn more about current and voltage:

brainly.com/question/4438943

brainly.com/question/10597501

brainly.com/question/12246020

#LearnwithBrainly

4 0
4 years ago
A train station bell gives off a fundamental tone of 500 Hz as the train approaches the station at a speed of 20 m/s. If the spe
Brut [27]

Answer: 529.9 Hz

Explanation:

Here we need to use the Doppler equation, so we have:

f' = f*(v + v0)/(v - vs)

Here, f is the frequency = 500Hz

v is the velocity of the wave, = 334m/s

v0 is the velocity of the observer = 20m/s

vs is the velocity of the source = 0m/s

Then we have:

f' = 500Hz*(334m/s + 20m/s)/(334m/s) = 529.9 Hz

8 0
3 years ago
Suppose you pour 0.250 kg of 20.0°C water into a 0.600 kg aluminum pan off the stove with a temperature of 173°C. Assume that th
lapo4ka [179]

Answer:

T_f=5.0116^{\circ}C

Explanation:

Given:

  • mass of water, m_w=0.25\ kg
  • initial temperature of water, T_i_w=20^{\circ}C
  • initial temperature of pan, T_i_p=173^{\circ}C
  • mass of pan, m_p=0.6\ kg
  • mass of water evapourated, m_v=0.03\ kg
  • specific heat of water, c_w=4186\ J.kg^{-1}.K^{-1}
  • specific heat of aluminium pan, c_a=900\ J.kg^{-1}.K^{-1}
  • latent heat of vapourization, L=2256000\ J.kg^{-1}

<u>Using the equation of heat:</u>

<em>Here, initially certain mass of water is vapourised first and then the remaining mass of water comes in thermal equilibrium with the pan.</em>

m_p.c_a.(T_{ip}-T_f)=m_v.L+(m_w-m_v).c_w.(T_f-T_{iw})

0.6\times 900\times (173-T_f)=0.03\times 2256000+(0.25-0.03)\times 4186\times (T_f-20)

T_f=5.0116^{\circ}C

5 0
3 years ago
Other questions:
  • The diagram shows light striking a pane of glass. Some of the light is reflected, and some of the light is transmitted. The lett
    12·2 answers
  • If baseball A is thrown horizontally, it will travel a certain distance horizontally. If the identical baseball B is thrown hori
    11·1 answer
  • Compare and contrast rutherford's "planetary model" of the atom with our current understanding of an atom's internal structure.
    5·1 answer
  • Multiply the following numbers, using scientific notation and the correct amount of significant digits. 1.003 m⋅3.09 =
    15·2 answers
  • A 2.5-cm-diameter parallel-plate capacitor has a 2.2 mm spacing. The electric field strength inside the capacitor is 6.0×104 V/m
    12·1 answer
  • What is the velocity of an object that has a momentum of 4000 kg-m/s and a mass of 115 kg? Round to the nearest hundredth.
    7·1 answer
  • Which unit abbreviation is a measurement of force?
    11·1 answer
  • The pitcher’s mound in baseball is 85 m from the plate. It takes 4 seconds for a pitch to reach the plate. How fast is the pitch
    9·1 answer
  • Please help <br> Physics is so confusing
    15·1 answer
  • QC Suppose you hear a clap of thunder 16.2s after seeing the associated lightning strike. The speed of light in air is 3.00× 10⁸
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!