Answer:
The ball fell 275.625 meters after 7.5 seconds
Explanation:
<u>Free fall
</u>
If an object is left on free air (no friction), it describes an accelerated motion in the vertical direction, powered exclusively by the acceleration of gravity. The formulas needed to compute the different magnitudes involved are
![V_f=gt](https://tex.z-dn.net/?f=V_f%3Dgt)
![\displaystyle y=\frac{gt^2}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%3D%5Cfrac%7Bgt%5E2%7D%7B2%7D)
Where
is the final speed of the object in free fall, assumed positive downwards, t is the time elapsed since the release and y is the vertical distance traveled by the object
The ball was dropped from a cliff. We need to calculate the vertical distance the ball went down in t=7.5 seconds. We'll use the formula
![\displaystyle y=\frac{gt^2}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%3D%5Cfrac%7Bgt%5E2%7D%7B2%7D)
![\displaystyle y=\frac{(9.8)(7.5)^2}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%3D%5Cfrac%7B%289.8%29%287.5%29%5E2%7D%7B2%7D)
Answer:
Solution
verified
Verified by Toppr
Given:
Mass of body = 30 kg
gravitational acceleration on the moon = 1.62 m/s
2
Weight of the body on the moon = Mass of the body×gravitational acceleration on the moon=30×1.62=48 N
What are the answer choices, if there are any?
Pet rocks contain organic matter