Answer:

Explanation:
Since the cable touches the road at the mid point of two towers
so here we have vertex at that mid point taken to be origin
now the maximum height on the either side is given as

horizontal distance of the tower from mid point is given as

now from the equation of parabola we have



now we have

now we need to find the height at distance of 200 ft from center
so we have


Answer:
The girl has greater tangential acceleration
Explanation:
The angular acceleration (
) of the merry go round is equal to the rate of the change of the angular velocity,
:

Since all the points of the merry go round complete 1 circle in the same time, the angular velocity of each point of the merry go round is the same, and so all the points also have the same angular acceleration.
The tangential acceleration instead is given by

where
is the angular acceleration
r is the distance from the centre of the merry go round
Since the girl is near the outer edge and the boy is closer to the centre, the value of r for the girl is larger than for the boy, so the girl has greater tangential acceleration.
When placing the piece of aluminium in water, the level of water will rise by an amount equal to the volume of the piece of aluminum.
Therefore, we need to find the volume of that piece.
Density can be calculated using the following rule:
Density = mass / volume
Therefore:
volume = mass / density
we are given that:
the density = 2.7 g / cm^3
the mass = 16 grams
Substitute in the equation to get the volume of the piece of aluminum as follows:
volume = 16 / 2.7 = 5.9259 cm^3
Since the water level will rise to an amount equal to the volume of aluminum, therefore, the water level will rise by 5.9259 cm^3