Answer:
Sorry I’m not rlly sure but maybe the 2nd or the last
Explanation:
Chlorine has a smaller atomic size.
Explanation: As you move towards right of the periodic table, the atomic size decreases. This is because the number of protons is increasing towards the right of the periodic table, which applies a greater inward force on the electrons. that is why the elements on the right of the periodic table have a smaller atomic size when compared to the elements on the left. Since chlorine is on the right side of aluminium, it has a smaller atomic size.
Answer:
Option C (nuclear binding energy) is the appropriate choice.
Explanation:
- At either the nuclear scale, the nuclear binding energy seems to be the energy needed to remove and replace a structure of the atom itself into the characterize elements (to counteract the intense nuclear arsenal).
- Nuclear warheads (bargaining power) bind everything together neutrons as well as protons within an elementary particle.
Some other options in question aren't relevant to the particular instance. So that the option preceding will also be the right one.
Answer:
There are 0,89 moles of nitrous oxide gas in the balloon.
Explanation:
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT ---> n= PV/RT
n= 1,09 atm x 20,0 L /0.082 l atm / K mol x 298 K
<em>n= 0,89212637 mol</em>