Answer: 670K
Explanation:
Given that,
Original volume of gas V1 = 1.22 L
Original temperature T1 = 286 K
New volume V2 = 2.86 L
New temperature T2 = ?
Since volume and temperature are involved while pressure is constant, apply the formula for Charles law
V1/T1 = V2/T2
1.22 L/286 K = 2.86 L/ T2
Cross multiply
1.22 L x T2 = 286 K x 2.86 L
1.22T2 = 817.96
Divide both sides by 1.22
1.22T2/1.22 = 817.96/1.22
T2 = 670.459 K (Round to the nearest whole number as 670 K)
Thus, the temperature of the gas is 670 Kelvin
Female energy the answer is the first one
Answer:
yes they are same thing by E=MC^2 EINSTEIN'S EQUATION
Answer:
100 mL
Explanation:
The reaction that takes place is:
- CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
First we <u>convert 500 mg of CaCO₃ into mmoles</u>, using its <em>molar mass</em>:
- 500 mg ÷ 100 mg/mmol = 5 mmol CaCO₃
Then we <u>convert 5 mmoles of CaCO₃ into HCl mmoles</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 5 mmol CaCO₃ *
= 10 mmol HCl
Finally we <u>calculate the volume of a 0.10 M HCl solution (such as stomach acid) that would contain 10 mmoles</u>:
- 10 mmol / 0.10 M = 100 mL