Answer: -3.49 m/s (to the south)
Explanation:
This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum
must be equal to the final momentum
, and taking into account this is aninelastic collision:
Before the collision:
(1)
After the collision:
(2)
Where:
is the mass of the car
is the velocity of the car, directed to the north
is the mass of the truck
is the velocity of the truck, directed to the south
is the final velocity of both the car and the truck
(3)
(4)
Isolating
:
(5)
(6)
Finally:
The negative sign indicates the direction of the velocity is to the south
Answer:
Speed = 575 m/s
Mechanical energy is conserved in electrostatic, magnetic and gravitational forces.
Explanation:
Given :
Potential difference, U = 
Mass of the alpha particle, 
Charge of the alpha particle is, 
So the potential difference for the alpha particle when it is accelerated through the potential difference is

And the kinetic energy gained by the alpha particle is

From the law of conservation of energy, we get





The mechanical energy is conserved in the presence of the following conservative forces :
-- electrostatic forces
-- magnetic forces
-- gravitational forces
Answer:
Kinetic Energy
Explanation:
Ang prinsipyo ay nagsasaad na ang enerhiya ay hindi maaaring malikha o masira, ngunit maaari lamang ma-convert mula sa isang anyo patungo sa isa pa. Ang tubig sa tuktok ng napakataas na talon ay nagtataglay ng gravitational potential energy. Habang bumabagsak ang tubig, ang enerhiya na ito ay na-convert sa kinetic energy, na nagreresulta sa isang daloy sa isang mataas na bilis.
Answer:
KE = 4 mv2 m = 2xKE valami. V m.
Explanation:
Answer:
70.5 mph
Explanation:
A passenger jet travels from Los Angeles to Bombay, India, in 22h.
The return flight takes 17 h.
The difference in flight times is caused by winds over the Pacific Ocean that
blow primarily from west to east.
If the jet's average speed in still air is 550 mi/h what is the average speed
of the wind during the round trip flight? Round to the nearest mile per hour.
Is your answer reasonable?
:
Let w = speed of the wind
:
Write a distance equation (dist is the same both ways
17(550+w) = 22(550-w)
9350 + 17w = 12100 - 22w
17w + 22w = 12100 - 9350
39w = 2750
W = 2750/39
w = 70.5 mph seems very reasonable
:
Confirming if the solution by finding the distances using these value
17(550+70.5) = 10549 mi
22(550-70.5) = 10549 mi; confirms our solution of w = 70.5 mph