I believe the answer you are looking for is perception.
Folk song
(Word cap filler)
Explanation:
At point B, the velocity speed of the train is as follows.

= 
= 26.34 m/s
Now, we will calculate the first derivative of the equation of train.
y = 

Now, second derivative of the train is calculated as follows.
Radius of curvature of the train is as follows.
![\rho = \frac{[1 + (\frac{dy}{dx})^{2}]^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}}](https://tex.z-dn.net/?f=%5Crho%20%3D%20%5Cfrac%7B%5B1%20%2B%20%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%7B%5Cfrac%7Bd%5E%7B2%7Dy%7D%7Bdx%5E%7B2%7D%7D%7D)
= ![\frac{[1 + 0.2e^{\frac{400}{1000}}^{2}]^{\frac{3}{2}}}{0.2(10^{-3})e^{\frac{400}{1000}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B1%20%2B%200.2e%5E%7B%5Cfrac%7B400%7D%7B1000%7D%7D%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%7B0.2%2810%5E%7B-3%7D%29e%5E%7B%5Cfrac%7B400%7D%7B1000%7D%7D%7D)
= 3808.96 m
Now, we will calculate the normal component of the train as follows.

= 
= 0.1822 
The magnitude of acceleration of train is calculated as follows.
a = 
= 
= 
Thus, we can conclude that magnitude of the acceleration of the train when it reaches point B, where sAB = 412 m is
.
<h2>
Entire trip takes 1.22 seconds.</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 0.866 s
Substituting
s = ut + 0.5 at²
s = 0 x 0.866 + 0.5 x 9.81 x 0.866²
s = 3.68 m
Halfway is 3.68 m
Total height = 2 x 3.68 = 7.36 m
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = ?
Displacement, s = 7.36 m
Substituting
s = ut + 0.5 at²
7.36 = 0 x t + 0.5 x 9.81 x t²
t = 1.22 s
Entire trip takes 1.22 seconds.
Answer:
Kinetic energy of bigger rock will be more than that of smaller one.
Explanation:
Kinetic energy of the rock is given by,
Kinetic energy = 
As velocity of both the rocks are same. Thus, kinetic energy is directly proportional to the mass of the rock
Kinetic energy ∝ mass
So, For greater mass kinetic energy will be greater and for smaller mass kinetic energy will be smaller.
Hence, Kinetic energy of bigger rock will be more than that of smaller one.