1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ludmilka [50]
3 years ago
8

A ball is dropped from rest from the top of a cliff that is 24 m high. From ground level, a second ball is thrown straight upwar

d at the same instant that the first ball is dropped. The initial speed of the second ball is exactly the same as that with which the first ball eventually hits the ground. In the absence of air resistance, the motions of the balls are just the reverse of each other. Determine how far below the top of the cliff the balls cross paths
Physics
1 answer:
sesenic [268]3 years ago
4 0

Answer:

6.0 m below the top of the cliff

Explanation:

We can find the velocity at which the ball dropped from the cliff reaches the ground by using the SUVAT equation

v^2-u^2 = 2gd

where

u = 0 (it starts from rest)

g = 9.8 m/s^2 (acceleration of gravity, we assume downward as positive direction)

h = 24 m is the distance covered

Solving for h,

v=\sqrt{2gh}=\sqrt{2(9.8)(24)}=21.7 m/s

So the ball thrown upward is launched with this initial velocity:

u = 21.7 m/s

From now on, we take instead upward as positive direction.

The vertical position of the ball dropped from the cliff at time t is

y_1 = h - \frac{1}{2}gt^2

While the vertical position of the ball thrown upward is

y_2 = ut - \frac{1}{2}gt^2

The two balls meet when

y_1 = y_2\\h-\frac{1}{2}gt^2 = ut - \frac{1}{2}gt^2 \\h = ut \rightarrow t = \frac{h}{u}=\frac{24}{21.7}=1.11 s

So the two balls meet after 1.11 s, when the position of the ball dropped from the cliff is

y_1 = h -\frac{1}{2}gt^2 = 24-\frac{1}{2}(9.8)(1.11)^2=18.0 m

So the distance below the top of the cliff is

d=24.0 - 18.0 = 6.0 m

You might be interested in
How can I covert these 2,34 meters in decimeters<br>​
zysi [14]

Answer:

If you meant 2.34, 2.34 meters = 23.4 decimeters.

Formula: multiply the value in meters by the conversion factor '10'.

So, 2.34 meters = 2.34 × 10 = 23.4 decimeters.

Hope that helps. x

4 0
3 years ago
Read 2 more answers
What is the difference between reflection and refraction? What changes and what does not change.
wolverine [178]

Answer:

Reflection involves a change in direction of waves when they bounce off a barrier. Refraction of waves involves a change in the direction of waves as they pass from one medium to another.

Explanation:

8 0
2 years ago
A negative charge is moved from point A to point B along an equipotential surface. Which of the following statements must be tru
elena-s [515]

Answer:

C) No work is required to move the negative charge from point A to point B.

Explanation:

An equipotential surface is defined as a surface connecting all the points at the same potential.

Therefore, when a charge moves along an equipotential surface, it moves between points at same potential.

The work done when moving a charge is given by

W=q\Delta V

where

q is the charge

\Delta V is the potential difference between the initial and final point of motion of the charge

However, the charge in this problem moves along an equipotential surface: this means that the potential does not change, so

\Delta V=0

And so, the work done is also zero.

7 0
4 years ago
Explain the range of effectiveness of each fundamental force by describing the distance that each force influence nearby matter
Bas_tet [7]

Answer:

Actually, gravity is the weakest of the four fundamental forces. Ordered from strongest to weakest, the forces are 1) the strong nuclear force, 2) the electromagnetic force, 3) the weak nuclear force, and 4) gravity.

6 0
3 years ago
A sprinter must average 24.0 mi/h to win a 100-m dash in 9.30 s. What is his wavelength at this speed if his mass is 84.5 kg?
crimeas [40]

Answer:

Wavelength λ = 7.31 × 10^-37 m

Explanation:

From De Broglie's equation;

λ = h/mv

Where;

λ = wavelength in meters

h = plank's constant = 6.626×10^-34 m^2 kg/s

m = mass in kg

v = velocity in m/s

Given;

v = 24 mi/h

Converting to m/s

v = 24mi/h × 0.447 m/s ×1/(mi/h)

v = 10.73m/s

m = 84.5kg

Substituting the values into the equation;

λ = (6.626×10^-34 m^2 kg/s)/(84.5kg × 10.73m/s)

λ = 7.31 × 10^-37 m

7 0
3 years ago
Read 2 more answers
Other questions:
  • A 45 kg boy runs at a rate of 2.5 m/s and jumps on top of a stationary skateboard that has a mass of 4 kg. After jumping onto th
    14·2 answers
  • In which scenario does radiation occur?
    6·2 answers
  • A certain material has a high melting point and is malleable and shiny. It is most likely a _____.
    6·2 answers
  • The more particles that are hitting each other in a fluid, the less pressure is created. true of false
    14·1 answer
  • Please may you answer this.
    9·1 answer
  • PLEASE HELP ME !!!!!
    9·1 answer
  • HELP ASAP WILL GIVE BRAINLIEST TO WHOEVER ANSWERS FIRST!!!!
    13·1 answer
  • What is the mass of a 50 kg person on earth?
    9·1 answer
  • The wind blows a leaf at 37.9 m/s for 118 s left. How are does the leaf go in that period of time.
    14·1 answer
  • Douun Dinosaur takes 32 s to walk along a straight road to a store 79 m away. What is Douun's speed in kilometers per hour?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!