Answer: It would increase.
Explanation:
The equation for determining the force of the gravitational pull between any two objects is:

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.
Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.
Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.
Answer: 244.05 J
Explanation:
To find speed at 30 m above the ground use equation:
V²=Vo²-2Gs
V0=31.4m/s
s=30m
G=9.81m/s²
-----------------------
V²=31.4²-2*9.81*30
V²=985.96+588.6
V²=1574.56
V=39.68m/s ---speed of arrow on 30 m obove the ground
Use equation for kinetic enrgy:
Ke=mV²/2
m=0.155kg
V=39.68m/s
-------------------------
Ke=0.155kg*(39.68m/s)²/2
Ke=0.155*1574.5/2
Ke=244.05J
9 is D I believe, I don't know about 10
Taking the vertical component of the displacement
1.1 - 0.2 = 0.9 mile
The horizontal component of the displacement
-0.3 mile
The magnitude of the displacement is
√[ (0.9)² + (-0.3) ] = 0.95 mile
The direction is
θ = tan-1 (-0.3/0.9)
θ = 161.57 degrees.