We are given that,

We need to find
when 
The equation that relates x and
can be written as,


Differentiating each side with respect to t, we get,



Replacing the value of the velocity


The value of
could be found if we know the length of the beam. With this value the equation can be approximated to the relationship between the sides of the triangle that is being formed in order to obtain the numerical value. If this relation is known for the value of x = 6ft, the mathematical relation is obtained. I will add a numerical example (although the answer would end in the previous point) If the length of the beam was 10, then we would have to



Search light is rotating at a rate of 0.96rad/s
Answer:
The maximum energy that can be stored in the capacitor is 6.62 x 10⁻⁵ J
Explanation:
Given that,
dielectric constant k = 5.5
the area of each plate, A = 0.034 m²
separating distance, d = 2.0 mm = 2 x 10⁻³ m
magnitude of the electric field = 200 kN/C
Capacitance of the capacitor is calculated as follows;

Maximum potential difference:
V = E x d
V = 200000 x 2 x 10⁻³ = 400 V
Maximum energy that can be stored in the capacitor:
E = ¹/₂CV²
E = ¹/₂ x 8.275 x 10⁻¹⁰ x (400)²
E = 6.62 x 10⁻⁵ J
Therefore, the maximum energy that can be stored in the capacitor is 6.62 x 10⁻⁵ J
Answer:
14.57 ohms
Explanation:
Here in the figure ,Rb & R₄are in series & also Rc & R₅ are in series. As they are in series , ( Rb + R₄ ) & (Rc & R₅) are in parallel . So the equivalent resistance in that branch = ( 2 + 18 ) ║ ( 3 + 12 )
= 20 ║ 15
= (20×15) / (20 + 15)
= 8.57 ohms
Also Ra ( 6 ohm ) is in series with that branch ,. So the equivalent resistance of the whole circuit = 8.57 + 6 = 14.57 ohms.
784 Newtons or 176.37 lbs