1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
3 years ago
7

water flows in a horizontal constant-area pipe; the pipe diameter is 75 mm and the average flow speed is 5 m/s. At the pipe inle

t, the gage pressure is 275 kpa, and the outlet is at atmoshperic pressure. determine the head loss in the pipe
Engineering
1 answer:
Veronika [31]3 years ago
3 0

Answer:

Head loss = 28.03 m

Explanation:

According to Bernoulli's theorem for fluids  we have

\frac{P}{\gamma _{w}}+\frac{V^{2}}{2g}+z=Constant

Applying this between the 2 given points we have

\frac{P_{1}}{\gamma _{w}}+\frac{V_{1}^{2}}{2g}+z_{1}=\frac{P_{2}}{\gamma _{w}}+\frac{V_{2}^{2}}{2g}+z_{2}+h_{l}

Here h_{l} is the head loss that occurs

\therefore h_{l}=\frac{P_{1}}{\gamma _{w}}+\frac{V_{1}^{2}}{2g}+z_{1}-\frac{P_{2}}{\gamma _{w}}-\frac{V_{2}^{2}}{2g}-z_{2}

Since the pipe is horizantal we have z_{1}-z_{2}=0

Applying contunity equation between the 2 sections we get

A_{1}V_{1}=A_{2}V_{2}\\\\\therefore V_{1}=V_{2}(\because A_{1}=A_{2})

Since the cross sectional area of the both the sections is same thus the speed

is also same

Using this information in the above equation of head loss we obtain

h_{l}=\frac{1}{\gamma _{w}}(P_{1}-P_{2})

Applying values we get

h_{l}=\frac{1}{9810}\times (275\times 10^{3})m\\\\\therefore h_{l}=28.03m

You might be interested in
Consider two different versions of algorithm for finding gcd of two numbers (as given below), Estimate how many times faster it
juin [17]

Answer:

Explanation:

Step 1:

a) The formula for compute greatest advisor is

     gcd(m,n) = gcd (n,m mod n)

the gcd(31415,14142) by applying Euclid's algorithm is

    gcd(31,415,14,142) =gcd(14,142,3,131)

                                  =gcd=(3,131, 1,618)

                                   =gcd(1,618, 1,513)

                                   =gcd(1,513, 105)

                                   =gcd(105, 43)

                                    =gcd(43, 19)

                                     =gcd(19, 5)

                                      =gcd(5, 4)

                                      =gcd(4, 1)

                                      =gcd(1, 0)

                                      =1

STEP 2

b)  The number of comparison of given input with the algorithm based on  checking consecutive integers and Euclid's algorithm is

     The number of division using Euclid's algorithm =10 from part (a)

      The consecutive integer checking algorithm:

      The number of iterations =14,142 and 1 or 2 division of iteration.

        14,142 ∠= number of division∠ = 2*14,142

         Euclid's algorithm is faster by at least 14,142/10 =1400 times

          At most 2*14,142/10 =2800 times.

5 0
3 years ago
An equal-tangent sag vertical curve (with a negative initial and a positive final grade) is designed for 55 mi/h. The PVI is at
Varvara68 [4.7K]

Answer:

The lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.

Explanation:

Length of curve is given as

L=2(PVT-PVI)\\L=2(242+30-240+00)\\L=2(230)\\L=460 ft

G_2 is given as

G_2=\frac{E_{PVT}-E_{PVI}}{0.5L}\\G_2=\frac{127.5-122}{0.5*460}\\G_2=0.025=2.5 \%

The K value is given from the table 3.3 for 55 mi/hr is 115. So the value of A is given as

A=\frac{L}{K}\\A=\frac{460}{115}\\A=4

A is given as

-G_1=A-G_2\\-G_1=4.0-2.5\\-G_1=1.5\\G_1=-1.5\%

With initial grade, the elevation of PVC is

E_{PVC}=E_{PVI}+G_1(L/2)\\E_{PVC}=122+1.5%(460/2)\\E_{PVC}=125.45 ft\\

The station is given as

St_{PVC}=St_{PVI}-(L/2)\\St_{PVC}=24000-(230)\\St_{PVC}=237+70\\

Low point is given as

x=K \times |G_1|\\x=115 \times 1.5\\x=172.5 ft

The station of low point is given as

St_{low}=St_{PVC}-(x)\\St_{low}=23770+(172.5)\\St_{low}=239+42.5 ft\\

The elevation is given as

E_{low}=\frac{G_2-G_1}{2L} x^2+G_1x+E_{PVC}\\E_{low}=\frac{2.5-(-1.5)}{2*460} (1.72)^2+(-1.5)*(1.72)+125.45\\E_{low}=124.16 ft

So the lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.

3 0
3 years ago
A 0.25in diameter steel rod BC is securely attached between two identical 1in diameter copper rods (AB and CD). Find the torque
Helen [10]

Answer:

Tmax= 46.0 lb-in

Explanation:

Given:

- The diameter of the steel rod BC d1 = 0.25 in

- The diameter of the copper rod AB and CD d2 = 1 in

- Allowable shear stress of steel τ_s = 15ksi

- Allowable shear stress of copper τ_c = 12ksi

Find:

Find the torque T_max

Solution:

- The relation of allowable shear stress is given by:

                             τ = 16*T / pi*d^3

                             T = τ*pi*d^3 / 16

- Design Torque T for Copper rod:

                             T_c = τ_c*pi*d_c^3 / 16

                             T_c = 12*1000*pi*1^3 / 16

                             T_c = 2356.2 lb.in

- Design Torque T for Steel rod:

                             T_s = τ_s*pi*d_s^3 / 16

                             T_s = 15*1000*pi*0.25^3 / 16

                             T_s = 46.02 lb.in

- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:

                             T = min ( 2356.2 , 46.02 )

                             T = 46.02 lb-in

6 0
3 years ago
Charging method .Constant current method​
mina [271]

Answer:

There are three common methods of charging a battery; constant voltage, constant current and a combination of constant voltage/constant current with or without a smart charging circuit.

Constant voltage allows the full current of the charger to flow into the battery until the power supply reaches its pre-set voltage.  The current will then taper down to a minimum value once that voltage level is reached.  The battery can be left connected to the charger until ready for use and will remain at that “float voltage”, trickle charging to compensate for normal battery self-discharge.

Constant current is a simple form of charging batteries, with the current level set at approximately 10% of the maximum battery rating.  Charge times are relatively long with the disadvantage that the battery may overheat if it is over-charged, leading to premature battery replacement.  This method is suitable for Ni-MH type of batteries.  The battery must be disconnected, or a timer function used once charged.

Constant voltage / constant current (CVCC) is a combination of the above two methods.  The charger limits the amount of current to a pre-set level until the battery reaches a pre-set voltage level.  The current then reduces as the battery becomes fully charged.  The lead acid battery uses the constant current constant voltage (CC/CV) charge method. A regulated current raises the terminal voltage until the upper charge voltage limit is reached, at which point the current drops due to saturation.

4 0
2 years ago
What is the definition of a duty cycle?
ira [324]

Answer:

D=\frac{PW}{T}*100

Explanation:

In electrical terms, is the ratio of time in which a load or circuit is ON compared to the time in which the load or circuit is OFF.

The duty cycle or power cycle, is expressed as a percentage of the activation time. For example, a 70% duty cycle is a signal that 70% of the time is activated and the other 30% disabled. Its equation can be expressed as:

D=\frac{PW}{T}*100

Where:

D=Duty\hspace{3}Cycle

PW=Pulse\hspace{3}Active\hspace{3}Time

T=Period\hspace{3}of\hspace{3}the\hspace{3}Signal

Here is a picture that will help you understand these concepts.

5 0
3 years ago
Other questions:
  • A six-lane freeway (three lanes in each direction) currently operates at maximum LOS C conditions. The lanes are 11 ft wide, the
    5·1 answer
  • If the efficiency of the boiler is 91.2 % , the overall efficiency of the turbine, which includes the Carnot efficiency and its
    5·1 answer
  • La base de los tema relacionados a las ciencia de las ingeniería es?
    7·1 answer
  • Suppose that the voltage is reduced by 10 percent (to 90 VV). By what percentage is the power reduced? Assume that the resistanc
    10·1 answer
  • When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the str
    11·1 answer
  • What is the moment that the wrench puts on the bolt?
    13·1 answer
  • There are some sections of the SDS that are not mandatory.
    11·1 answer
  • How to plot 0.45 gradation chart for sieve analysis ?
    12·1 answer
  • Explain wet and dry compression tests​
    6·1 answer
  • Summarize key
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!