Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW
Answer:
Explanation:
The detailed steps and appropriate calculation with analysis is as shown in the attachment.
Answer:
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Explanation:
Conservation momentum, when ball A strikes Ball B
Where,
M= Mass
V= Velocity
Ma(VA)1+ Mg(Vg)2= Ma(Va)2+ Ma(Vg)2
MV + 0= MVg2
Coefficient of restitution =
e= (Vg)2- (Va)2/(Va)1- (Vg)1
e= (Vg)2- (Va)2/ V-0
Solving equation 1 and 2 yield
(Va)2= V(l-e) /2
(Vg)2= V(l+e)/2
Conservative momentum when ball b strikes c
Mg(Vg)2+Mc(Vc)1 = Mg(Vg)3+Mc(Vc)2
=> M[V(l+e) /2] + 0 = M(Vg)3 + M(Vc) 2
Coefficient of Restitution,
e= (Vc)2 - (Vg)2/(Vg)2- (Vc)1
=> e= (Vc)2 - (Vg)2/V(l+e) /2
Solving equation 3 and 4,
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Answer:
Velocity component in x-direction
.
Explanation:
v=3xy+
y
We know that for incompressible flow


So 

By integrate with respect to x,we will find
+C
So the velocity component in x-direction
.
Answer:
q = 1.73 W
Explanation:
given data
small end = 5 cm
large end = 10 cm
high = 15 cm
small end is held = 600 K
large end at = 300 K
thermal conductivity of asbestos = 0.173 W/mK
solution
first we will get here side of cross section that is express as
...............1
here x is distance from small end and S1 is side of square at small end
and S2 is side of square of large end and L is length
put here value and we get
S = 5 +
S =
m
and
now we get here Area of section at distance x is
area A = S² ...............2
area A =
m²
and
now we take here small length dx and temperature difference is dt
so as per fourier law
heat conduction is express as
heat conduction q =
...............3
put here value and we get
heat conduction q =
it will be express as
now we intergrate it with limit 0 to 0.15 and take temp 600 to 300 K
solve it and we get
q (30) = (0.173) × (600 - 300)
q = 1.73 W