Answer:
The idle speed of a running compression should be between 50-75 PSI and that is about half of the static compression.
Explanation:
The Running or Dynamic compression is used to determine how well the cylinder in an engine is absorbing air, reserving it for the proper length of time, and releasing it to the exhaust. The static or cranking compression test is used to check the sealing of the cylinder. Before performing the running compression test, the static compression test is first performed to rule out other issues like bent valves.
The standard value for the static compression is given by;
Compression ratio * 14.7 = Manufacturers Specification
The running compression should always be half of the static compression.
Answer:
a. 2.08, b. 1110 kJ/min
Explanation:
The power consumption and the cooling rate of an air conditioner are given. The COP or Coefficient of Performance and the rate of heat rejection are to be determined. <u>Assume that the air conditioner operates steadily.</u>
a. The coefficient of performance of the air conditioner (refrigerator) is determined from its definition, which is
COP(r) = Q(L)/W(net in), where Q(L) is the rate of heat removed and W(net in) is the work done to remove said heat
COP(r) = (750 kJ/min/6 kW) x (1 kW/60kJ/min) = 2.08
The COP of this air conditioner is 2.08.
b. The rate of heat discharged to the outside air is determined from the energy balance.
Q(H) = Q(L) + W(net in)
Q(H) = 750 kJ/min + 6 x 60 kJ/min = 1110 kJ/min
The rate of heat transfer to the outside air is 1110 kJ for every minute.
Answer:
(a) Relative Humidity = 48%,
Specific humidity = 0.0095
(b) Enthalpy = 65 KJ/Kg of dry sir
Specific volume = 0.86 m^3/Kg of dry air
(c/d) 12.78 degree C
(e) Specific volume = 0.86 m^3/Kg of dry air
Answer:
a. ε₁=-0.000317
ε₂=0.000017
θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain =3.335 *10^-4
Associated average normal strain ε(avg) =150 *10^-6
θ = 31.71 or -58.29
Explanation:

ε₁=-0.000317
ε₂=0.000017
To determine the orientation of ε₁ and ε₂

θ= -13.28° and 76.72°
To determine the direction of ε₁ and ε₂

=-0.000284 -0.0000335 = -0.000317 =ε₁
Therefore θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain

=3.335 *10^-4

ε(avg) =150 *10^-6
orientation of γmax

θ = 31.71 or -58.29
To determine the direction of γmax

= 1.67 *10^-4
Answer: Some activities that I do in my daily life that require energy are:
1. Doing ballet
2. Studying
3. Walking up and down stairs
4. Stretching
5. Running on the treadmill
Hope this helps! :)
Explanation: