The angle between the two vectors is 126° 52' 11".
The given parameters;
vector A = 3.00i + 1.00j
vector B = 1.00i + 3.00j
The angle between the two vectors is calculated as follows;

The dot product of vectors A and B is calculated as;
A.B = ( 3i + 1j ) . ( 1i +3j )
= ( 3 × 1 ) + ( 1 × 3 )
= 3 + 3
= 6
The magnitude of vectors A and B is calculated as;
|A| = ![\sqrt[]{3^2 + 1^2} = \sqrt[]{10} \\](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B3%5E2%20%2B%201%5E2%7D%20%3D%20%5Csqrt%5B%5D%7B10%7D%20%5C%5C)
|B| = ![\sqrt[]{1^2 + 3^2} = \sqrt[]{10} \\](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B1%5E2%20%2B%203%5E2%7D%20%3D%20%5Csqrt%5B%5D%7B10%7D%20%5C%5C)
The angle between in two vectors is calculated as;
![Cos \theta = \frac{6}{\sqrt[]{10}\sqrt[]{10} } \\\\Cos \theta = \frac{6}{\ 10 }\\\\Cos \theta = 0.6\\\\\theta = cos^-^1 (0.6)\\\\\theta = 126\\](https://tex.z-dn.net/?f=Cos%20%5Ctheta%20%3D%20%5Cfrac%7B6%7D%7B%5Csqrt%5B%5D%7B10%7D%5Csqrt%5B%5D%7B10%7D%20%20%7D%20%5C%5C%5C%5CCos%20%5Ctheta%20%3D%20%5Cfrac%7B6%7D%7B%5C%2010%20%7D%5C%5C%5C%5CCos%20%5Ctheta%20%3D%200.6%5C%5C%5C%5C%5Ctheta%20%3D%20cos%5E-%5E1%20%280.6%29%5C%5C%5C%5C%5Ctheta%20%3D%20126%5C%5C)
Therefore, the angle between the two vectors is 126° 52' 11".
Learn more about vectors here:
brainly.com/question/25705666
#SPJ4