Answer:
b) the reaction proceeds to a new equilibrium in the direction that offsets the change.
Explanation:
According to Le Chatelier's principle, when a system experiences a constraint such as a change in pressure, temperature or concentration, the system will readjust itself in order to annul the constraint.
This simply means that when temperature, concentration or pressure is changed, a new equilibrium position is reached in order to offset the changes in the system.
Answer:
A sample of an ideal gas has a volume of 2.21 L at 279 K and 1.01 atm. Calculate the pressure when the volume is 1.23 L and the temperature is 299 K.
You need to apply the ideal gas law PV=nRT
You have the pressure, P=1.01 atm
you have the volume, V = 2.21 L
The ideal gas constant R= 0.08205 L. atm/ mole.K at 273 K
find n = PV/RT = (1.01 atm x 2.21 L / 0.08205 L.atm/ mole.K x 273 K)
n= 0.1 mole, Now find the pressure for n=0.1 mole, T= 299K and
L=1.23 L
P=nRT/V= 0.1mole x 0.08205 (L.atm/ mole.K x 299 k)/ 1.23 L
= 1.994 atm
Explanation:
Answer:
<h3>The answer is 2.0 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 4 g
volume = 2 cm³
We have

We have the final answer as
<h3>2.0 g/cm³</h3>
Hope this helps you