Apply the combined gas law
PV/T = const.
P = pressure, V = volume, T = temperature, PV/T must stay constant.
Initial PVT values:
P = 1atm, V = 8.0L, T = 20.0°C = 293.15K
Final PVT values:
P = ?, V = 1.0L, T = 10.0°C = 283.15K
Set the PV/T expression for the initial and final PVT values equal to each other and solve for the final P:
1(8.0)/293.15 = P(1.0)/283.15
P = 7.7atm
Answer:
Speed = 575 m/s
Mechanical energy is conserved in electrostatic, magnetic and gravitational forces.
Explanation:
Given :
Potential difference, U = 
Mass of the alpha particle, 
Charge of the alpha particle is, 
So the potential difference for the alpha particle when it is accelerated through the potential difference is

And the kinetic energy gained by the alpha particle is

From the law of conservation of energy, we get





The mechanical energy is conserved in the presence of the following conservative forces :
-- electrostatic forces
-- magnetic forces
-- gravitational forces
Answer:
I think the answer 1
Explanation:
im probably wrong too i dont know
Answer:
α = 0.0135 rad/s²
Explanation:
given,
t = 133 min = 133 x 60 = 7980 s
angular speed varies from 570 rpm to 1600 rpm
now,
570 rpm = 
= 59.69 rad/s
1600 rpm = = 
= 167.6 rad/s
using equation of rotational motion
ωf = ωi + αt
167.6 = 59.7 + α x 7980
α x 7980 = 107.9
α = 0.0135 rad/s²