Answer:
101,37°C
Explanation:
Boiling point elevation is one of the colligative properties of matter. The formula is:
ΔT = kb×m <em>(1)</em>
Where:
ΔT is change in boiling point: (X-100°C) -X is the boiling point of the solution-
kb is ebulloscopic constant (0,52°C/m)
And m is molality of solution (mol of ethylene glycol / kg of solution). Moles of ethylene glycol (MW: 62,07g/mol):
203g × (1mol /62,07g) = <em>3,27moles of ethlyene glycol</em>
<em />
Molality is: 3,27moles of ethlyene glycol / (1,035kg + 0,203kg) = 2,64m
Replacing these values in (1):
X - 100°C = 0,52°C/m×2,64m
X - 100°C = 1,37°C
<em>X = 101,37°C</em>
<em></em>
I hope it helps!
Answer:
37.1 calories.
Approximately, 37.1 = 40 calories.
Explanation:
So, without mincing words let's dive straight into the solution to the question above.
We are given the following parameters which are going to help in solving this particular Question.
The mass of broccoli = 86g of broccoli, mass of carbohydrates present = 6g of carbohydrates, the mass of protein present = 2.6g of protein and the mass of fat present = 0.3g of fat.
Therefore, the nutritional energy content (in Calories) = (6 × 4) + (2.6 × 4) + (0.3 × 9) = 10.4 + 24 + 2.7 = 37.1
Hence, the nutritional energy content (in Calories) = 37.1 calories.
Approximately, 37.1 = 40 calories.
Answer:
36
Explanation:
Since the sample was undiluted the number of colonies is the number that grew on the nutrient agar which is 36 colonies. If it was diluted for example let say 0.1 ml from a dilution in which 1 ml of the sample was added to 9 ml of water, and it grew colonies then 0.1 ml yielded 6 colonies, 1 ml of the diluted sample will yield 60 colonies and 10 ml will have 600 colonies and therefore the 1 ml undiluted sample will have 600 colonies.
HM, I think the answer would be D. This is just a guess, so please use it if ou want to answer D it's ok :D
Answer is (1) - N
<em>Explanation:</em>
I think the given chart is electronegativity chart.
Electronegativity is a
value that tells us how an atom can attract electrons towards itself. <span><u>If the electronegativity is
high, then the attraction to the electrons is high unless the attraction to the
electrons is low. </u>
Electronegativity increases from left to right of the periodic table and decreases from up to down.
Hence, highest electronegative atom is F which has 4.0 and lowest electronegative atoms are Cs and Fr (0.7).
The electronegativity values for given atoms are
N - 3.0
Na - 0.9
P - 2.1
Pt - 2.2
</span>