Answer:
The answer to your question is 1.25 M
Explanation:
Data
Molarity 1 = ?
Volume 1 = 60 ml
Molarity 2 = 0.5 M
Volume 2 = 150 ml
Process
1.- Write the dilution formula
Molarity 1 x Volume 1 = Molarity 2 x Volume 2
-Solve for Molarity 1
Molarity 1 = Molarity 2 x Volume 2 / Volume 1
-Substitution
Molarity 1 = (0.5)(150) / 60
-Simplification
Molarity = 75 / 60
-Result
Molarity = 1.25 M
<u>Answer:</u> The volume of carbon dioxide gas at STP for given amount is 106.624 L
<u>Explanation:</u>
We are given:
Moles of carbon dioxide = 4.76 moles
<u>At STP:</u>
1 mole of a gas occupies a volume of 22.4 Liters
So, for 4.76 moles of carbon dioxide gas will occupy a volume of = 
Hence, the volume of carbon dioxide gas at STP for given amount is 106.624 L
A mineral is a naturally occurring inorganic element or compound having an orderly internal structure and characteristic chemical composition, crystal form, and physical properties. ... A rock is an aggregate of one or more minerals, or a body of undifferentiated mineral matter.
Answer: Option (d) is the correct answer.
Explanation:
It is known that length of a bond is inversely proportional to the bond strength. This also means that a single bond has long length due to which it is weak in nature.
And, a double bond is shorter in length and has more strength as compared to a single bond. Whereas a triple bond has the smallest length and it has high strength as compared to a double or single bond.
For example, carbon monoxide is CO where there is a triple bond between the carbon and oxygen atom.
Carbon dioxide is
where there exists a double bond between the carbon and oxygen atom.
A carbonate ion is
when two oxygen atoms are attached through single bond with the carbon atom and another oxygen atom is attached through a double bond to the carbon atom.
Hence, we can conclude that order of increasing bond strength of the given carbon oxygen bond is as follows.
Carbonate ion < carbon dioxide < carbon monoxide
C is the correct answer (CaF2) (sorry dont have subscript)
Explanation: synthesis reaction forms a compound and calcium reacting with fluorine produces Calcium Fluoride (CaF2) chemical name